Imperial College
London

DEPARTMENT OF COMPUTING

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

Gaussian Processes for Hybridisation
of Analytical and Data-Driven
Approaches for Design of Experiments

Simon Olofsson

Submitted:
6 December 2019

Revised:
9 May 2020

Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy
in Computing of the Diploma of Imperial College London



Declaration of Originality

I herewith certify that all material in this dissertation which is not my own work has been

properly acknowledged.



Copyright

The copyright of this thesis rests with the author. Unless otherwise indicated, its contents are
licensed under a Creative Commons Attribution-Non Commercial 4.0 International Licence

(CC BY-NC).

Under this licence, you may copy and redistribute the material in any medium or format.
You may also create and distribute modified versions of the work. This is on the condition
that: you credit the author and do not use it, or any derivative works, for a commercial

purpose.

When reusing or sharing this work, ensure you make the licence terms clear to others by
naming the licence and linking to the licence text. Where a work has been adapted, you

should indicate that the work has been changed and describe those changes.

Please seek permission from the copyright holder for uses of this work that are not included

in this licence or permitted under UK Copyright Law.



Abstract

In many areas of science and engineering, gathering data and making measurements of a
system is costly and time-consuming. Whether the data comes from real-life experiments
or computer models, we wish to maximally utilise already existing data to make informed
and optimal decisions. The decisions might have to do with where next to evaluate the
system, or how to control the system. Our focus is on design of experiments to aid model

discrimination, i.e. discarding inadequate members of a set of rival models.

Many models are too complex to analyse to the extent we sometimes wish. To discriminate
between parametric models, we often wish to compute function gradients. However, if our
function involves evaluating complex legacy code or stochastic simulations, then function
gradients are not readily available to us. The function is effectively a black box, where we
can input variable values and collect the output function value, without knowing exactly

what happens inside the box.

For situations involving black-box functions or models, we turn to black-box methods. Our
approach is to construct probabilistic surrogate models using Gaussian process regression.
A Gaussian process is a distribution over functions, yielding a Gaussian distribution at each

test point, with a mean and variance conditioned on previous function or model evaluations.

We use the surrogate model method to tackle design of experiments for model discrimina-
tion. Given our surrogate models, we can utilise existing analytical methods to solve our
problems, taking the inherent uncertainty in variables and about our surrogate models into
account. Using literature case studies, we demonstrate how our method balances accuracy
and computational complexity in solving both the design of experiments and model discrim-
ination problems. We do this for both static and dynamic models. Open-source Python

packages GPdoemd and doepy implement our methods.
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Open-Source Software

GPdoemd
Python package for design of experiments for model discrimination using Gaussian

process surrogate models [Olofsson et al., 2019a].

Available online at https://github.com/cog-imperial/GPdoemd

doepy

Python package for design of dynamic experiments.

Available online at https://github.com/scwolof/doepy
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Notation

General notation

Symbol Description
a Scalar variable, or function.
A Scalar constant.
a Column vector.
Matrix or tensor.
I Identity matrix.
a', AT Transpose of vector a and matrix A.
A7! Inverse of matrix A, such that AA~! =1
|A| Determinant of matrix A.
tr(A) Trace of matrix A.
diag(a) Diagonal matrix with elements aq, ..., a4, € @ on the diagonal.
diag(A) Vector [A11,A22,. .., Adydal -
diag(A,B) Block-diagonal matrix.
N(p, %) Multivariate Gaussian distribution with mean p and covariance X.
N(a|p,X) Gaussian probability density function evaluated at a.
R The set of real numbers (0, 1, f%, m, etc.).
E.[b(a)] The expectation of b(a) computed over the distribution of a.
Va[b(a)] The variance of b(a) computed over the distribution of a.
Vah Gradient of ¢(a,...) with respect to a, evaluated at @ = E,[a].




26

Design of experiments notation

Symbol  Description
u Design/control variable.
DI Design/control variable covariance.
UL N Chapter 5: Designs for experiments 1,..., N.
ug.r—1 Chapter 6: Control inputs at time steps 0,...,7 — 1.
D, Dimensionality of design variable space, u € RP=.
x(® Latent state of model i.
ugi) Latent state mean of model 7 at time step t.
2,@ Latent state covariance of model ¢ at time step ¢.
D,;  Dimensionality of latent state space of model i, z() € RP=i.
» Chapter 5: Concatenated design variable and model parameter.
Chapter 6: Observed state.
Y Experimental measurement (observed state with noise).
Yi.N Chapter 5: Measurements in experiments 1,..., V.
Yy Chapter 6: Measurements at time steps 1,...,7.
D, Dimensionality of observation space, z,y € RP=.
i Parameters of model i , 8; € RP?.
0; Maximum a posteriori parameter estimate for model 3.
X0, Model 7 parameter covariance.
Dy ; Dimensionality of model i’s parameter space, 8; € RPo:i.
v Measurement noise.
y Measurement noise covariance.
w Process noise.
pI Process noise covariance.
f; Chapter 5: Model i.
Chapter 6: Model ¢’s transition function.
M; Chapter 6: Model i.
M Number of rival models f;, M;; i=1,..., M.
fi @ Output dimension d of f;; d=1,...,D.
D Design criterion, e.g. DjR.

Observation matrix of model 3.
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Gaussian process notation

Symbol

Description

g‘])(.7 )
m(-)

S
o

I s

W2 R K e X

=
&

Gaussian process prior

Mean function.

Covariance function.

Gaussian process model’s posterior mean.

Gaussian process model’s posterior variance.
Covariance function signal variance.

Length scale for input dimension j.

Diagonal matrix diag()\3,..., %) of squared length scales.
Measurement noise.

Measurement noise variance.

Training inputs, X € RVN*D=,

Training targets (labels), single output, y € RV,
Training targets (labels), multi-output, Y € RN*Dy,
Training inputs covariance matrix, K € RV*¥V,
Number of training data.

Number of inducing points (sparse GP regression).

Dimension d of some function ¢, used for multi-output models.

Model discrimination notation

Symbol  Description
TN Normalised Gaussian posterior probability of model i after N experiments.
X3 x? score of model i.
wj Akaike weight of model i.
D Data set with experimental inputs and measurements.

N

Number of measurements, N = |D].
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“All experiments are designed experiments, it is just that

some are poorly designed and some are well-designed.”

— UNKNOWN
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1 Introduction

Systems biology, pharmaceutical engineering, biochemical engineering and many other sci-
entific and engineering fields deal with noisy and uncertain processes. Modelling these
processes is often difficult, and exacerbated by the difficulty of observing mechanisms and
reactions on the cellular and molecular level or inside living test subjects. Researchers and
engineers can devise different hypotheses about underlying system mechanisms to explain a
system’s behaviour. These hypotheses are formulated as mathematical parametric models.
The development of accurate mechanistic models depends on informative experimental data
to guide model discrimination and parameter estimation [Asprey and Macchietto, 2000].
Model discrimination, the process of discarding inaccurate models, forms part of the core
of scientific endeavour as it is fundamentally about figuring out how the world around us

works.

As a motivating example to illustrate the real-world importance of model discrimination,
consider healthcare. A patient’s health and safety is an important concern, and healthcare is
a heavily regulated industry. In the USA and the EU, private and public regulatory bodies
exist on federal /union and state levels [Field, 2008; Hervey, 2010]. Healthcare companies
applying to market a new drug or medical device must submit extensive technical information
to the regulatory bodies. In the USA and the EU, the Food & Drug Administration (FDA)
and European Medicines Agency (EMA) handle these applications, respectively. The FDA
require that the technical information contains e.g. the chemical composition of the drug,
how the drug affects the human body (pharmacodynamics), how the body affects the drug

(pharmacokinetics), and methods for drug manufacturing, packaging and quality control
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[U.S. Food & Drug Administration, 2018]. Likewise, applying to market a new medical device
requires submitting extensive technical information. A medical device can be any appliance,
software or material used for non-pharmacological diagnosis, monitoring or treatment of a
disease or condition [European Union, 2017]. An important part of proving the efficacy and
safety of a new drug or medical device is showing that its effects on the patient can be

predicted and interpreted, e.g. via mathematical and computational models.

These transparency and interpretability requirements, combined with limited amounts of
available experimental data, make models learnt solely from observed data unsuitable for
proving the efficacy and safety of a new drug or medical device to the regulatory bodies.
Hence researchers use explicit parametric models. For drugs, the pharmacokinetics (how
the human body affects the drug) is often modelled using systems of ordinary differential
equations. These models elucidate how the drug is absorbed and distributed through the
body (e.g. brain, kidneys and liver) under different dosing profiles and methods of drug
administration (e.g. orally or intravenously) (see Figure 1.1). The EMA pharmacokinetic
model guidelines state that regulatory submissions should include detailed descriptions of the
models, i.e. justification of model assumptions, parameters and their biochemical plausibility,

as well as parameter sensitivity analyses [European Medicines Agency, 2011, p. 16; 2016,

p- 3].

DiMasi et al. [2016] estimate the average pre-approval R&D cost for new drugs to $2.56B,
of which $1.1B is spent in the pre-clinical stage (in 2013 US dollars). A key problem is
to identify a mathematical model that usefully explains and predicts the behaviour of the
pharmacokinetic process [Galvanin et al., 2013; Heller et al., 2018]. Successful model discrim-
ination early in the drug development may lower costs, whereas inaccurate models passing
the pre-clinical stage can incur significant costs [Scannell and Bosley, 2016; Plenge, 2016].
Hence, inaccurate models should be discarded as early as possible in the drug development
process. But researchers will often have insufficient experimental data to discriminate be-
tween the models. Additional experiments are generally expensive and time-consuming.
Pharmacokinetic experiments typically take 824 hours for mice and rats, and 12-100 hours
for simians and humans [Ogungbenro and Aarons, 2008; Tuntland et al., 2014]. Observ-

ability of mechanisms and reactions on the cellular and molecular level or inside living test
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Figure 1.1: Different aspects of pharmacokinetic models. (Top left) simple pharmacokinetic
model with four compartments: digestive system, liver, bloodstream and other tissue. The
drug can enter as tablets into the digestive system or as an injection into the bloodstream,
and leave the system by being excreted as waste. (Bottom left) the effect on drug concen-
tration in a patient from two different dosing profiles: (i) half the dose twice per day, or (ii)
the full dose once per day. (Centre) two different methods of drug administration: orally in
the form of tablets, or intravenously as an injection, and (Right) their different effects: an
injection has a quicker effect than tablets.

subjects is limited. To minimise the number of additional experiments required for model
discrimination, it is important to design experiments yielding maximally informative out-

comes.

The example presented here demonstrates the importance of mechanistic modelling, and
some of the challenges faced by practitioners. Model discrimination is only one of those
challenges. The optimal design of experiments to aid model discrimination is a non-trivial
problem, particularly since there are many sources of uncertainty that need to be accounted
for (e.g. measurement and process noise). Although literature stretches back at least as far
as Hunter and Reiner [1965], some important challenges remain to be solved. We tackle

some of these challenges in this work.
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1.1 Objective

This thesis demonstrates how surrogate models can be used to find optimal experimental
designs to aid discrimination between rival black-box models. The novel surrogate-based
approach helps bridge the gap between existing approaches, and tries to combine their

advantages in terms of computational speed and modelling flexibility.

1.2 Outline

Figure 1.2 illustrates the structure of the manuscript and how the chapters are linked.

Chapter 2 gives an introduction to Gaussian process regression and approximate inference,
which will be used for surrogate model-based solutions when the models are not written

down in analytical form.

Chapter 3 introduces existing work on optimal design of experiments for model discrimina-
tion and the two main approaches for solving the problem under uncertainty: the analytical
approach and the data-driven approach. These two approaches are contrasted, and advan-

tages and disadvantages of both approaches discussed.

Chapter 4 describes a new design criterion, based on the quadratic Jensen-Rényi divergence.
Design criteria are maximised in order to find optimal designs using the analytical approach
to design of experiments. The new design criterion is compared to existing design criteria

in literature, and the trade-offs of different design criteria discussed.

In Chapter 5, we show how design of experiments for model discrimination can be performed
even for cases of black-box models, using Gaussian process surrogate models. The software

package GPdoemd is introduced.

Chapter 6 extends the GP surrogate model methodology of the previous chapter to design

of dynamic experiments, where the models are explicitly time-dependent.

Chapter 7 provides a discussion of trade-offs we have made and possible future directions

for research, as well as some conclusions.
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Machine Design of Model
Learning Experiments Discrimination
Gaussian
Chapter 2
GP
Background . ( )
regression
Analytical and
Chapter 3 naytieal an Discrimination
data-driven o
Background criteria
approaches
Jensen-Rényi
Chapter 4 divergence
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GP surrogate
Chapter 5 approach

(static exp’s)

|

GP surrogate
Chapter 6 approach
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Figure 1.2: Structure of the manuscript and illustration of how the chapters are linked. The
three themes of the thesis is (i) machine learning, (ii) design of experiments, and (iii) model
discrimination. Chapter 4 makes a novel contribution to design of experiments, Chapter 5
combines the three themes to tackle design of static experiments for model discrimination,
and Chapter 6 extends this to design of dynamic experiments.
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2 (Gaussian Process Regression

This chapter gives an introduction to Gaussian process (GP) regression. GPs are universal
function approximators that can be trained on observed data. This makes them useful

surrogates for expensive-to-evaluate black-box models.

2.1 Bayesian Inference

Bayesian statistics provides a framework for describing epistemological uncertainty (due
to limited data or knowledge) using the same mathematical tools commonly employed to
aleatory uncertainty (due to inherent randomness). Bayesian statistics combine prior beliefs
about random variables with observed data to form posterior beliefs. The goal is to be able
to account for both epistemological and aleatory uncertainty when making decisions. As an
example, Bayesian statistics allows us to use the same mathematical language to describe
uncertainty due to unknown system mechanisms or uncertain model parameters (epistemo-
logical uncertainty) and measurement or process noise (aleatory uncertainty). Engineers,

chemists, biologists and others have to deal with many sources of uncertainty.

Assume two random variables A and B. Their joint prior distribution is denoted p(A4, B).
Given the joint distribution, the marginal distribution p(A) of A may be computed by

integrating over B

p(A) = /p(A,B)dB.
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The joint distribution p(A, B) can also be written as the product of a conditional distribu-
tion, e.g. p(B|A), and a marginal distribution, e.g. p(A). This relationship yields what is
commonly referred to as Bayes’ rule!

p(B14)p(4)

ralp) = P

If we know the statistical relationship between two random variables, Bayes’ rule provides
the means of updating our beliefs about random variables given observations. If we observe
one random variable, we can compute the new posterior distribution for the other, e.g. the

posterior distribution p(A|B = b) of A given that we have observed B = b

_ .y _ p(b]A)p(4)
p(A|B =0b) = o(0) .

The posterior-update version of Bayes’ rule is often written in plain words as

. likelihood x prior
posterior = ——M
evidence

Updating prior beliefs given data forms the backbone of Bayesian inference. One challenge is
to find prior distributions that allow for efficient computation of the posterior distributions

of random variables. The Gaussian distribution is one such prior distribution.

2.2 Gaussian Distribution

Let € ~ N (g, X) denote a random variable € RP+ with distribution p(x) given by the

multivariate Gaussian probability density function
p(x) = (27r)_D’”/2 |§J|_1/2 exp (F(x — p'E Nz —p), (2.2.1)

with mean p € RP= and positive definite covariance matrix 3 € RP=*D=

The Gaussian distribution is perhaps the most commonly used approximation in science and

L Also known as Bayes’ theorem or Bayes’ law.
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engineering for describing random variables. There are two main reasons for this. First, the
Gaussian distribution often yields analytically tractable results. Secondly, the Central Limit
Theorem shows that as sample sizes go to infinity, the distribution of sample means will be
Gaussian distributed, which means that the Gaussian distribution is a useful approximation

for scenarios where the effects of multiple random variables are combined.

Let the two random variables A and B have Gaussian joint prior distribution

A 2 2
~pAB) =N [P0 TR (2.2.2)

2 2
B KB 0AB 9B

The marginal distributions are given by p(A) = N(ua,0%) and p(B) = N(up,0%). For
the covariance matrix in Equation (2.2.2) to be positive definite, 03 > 0% 5 and 0% > 0%

must be satisfied.

Given observation B = yp of the random variable B, the posterior distribution (i.e. the

updated belief) p(A|B) for A given B can be written in closed form as

PAIB) = N (1ap: o%5) -

2

pap = pa+ 2 (ys — np), (2.2.3)
2 2

7y = o5 - g

Figure 2.1 shows an example of prior joint and marginal distributions for two random vari-

ables A and B, and the posterior distribution given an observation yz.
Three important observations:

; 2 2 2 2 ; ; 2 2 ;
L. Since 03 > 033 and o > 0% g, the posterior variance 0 < 035 < 0. The posterior
variance is smaller than the prior variance, i.e. information has been gained from

observing B = yp.

2. 0124‘3 is not dependent on the observed value yp, i.e. the reduction in variance happens

regardless of what value is observed.

3. If the correlation between A and B goes to 1, then p g = yp and ailB =0.
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L . bttt

Figure 2.1: Prior joint distribution p(A, B), marginal distributions p(A) and p(B), and the
posterior distribution p(A|B) after B = yp has been observed. The posterior distribution
p(A|B) is the slice of p(4, B) at B = yp.

The third observation will be important in the next section, where we parameterise the
random variables. If A and B are dependent on deterministic parameters « 4 and x g, then

we will expect strong correlation between A and B if x4 = xp.

2.3 Gaussian Process Inference

In Section 2.1 and Section 2.2, there is a finite set {A, B} of random variables. But Bayesian
inference can be extended to random processes and generalised to the infinite-dimensional
case. A random process is a collection of random variables, where each random variable
is indexed in some way. Typically, this indexation takes the form of random variables as
functions g(x) dependent on an external factor . The goal of Bayesian inference for random

processes is to find distributions over functions.

A Gaussian process (GP) is a collection of random variables, any finite subset of which is
jointly Gaussian distributed [Rasmussen and Williams, 2006]. A GP prior on a function

g:RP» 5 R

g~GgP (m()7 k('a )) ’
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is completely specified by its mean function m and covariance function k. GPs are (data-
driven) Bayesian non-parametric models that can infer posterior distributions for both scalar

and vector functions g.

2.3.1 Inference for Scalar Function

The function g : RP> — R takes a vector input and produces a scalar output. Let

X and g(X) denote a set of N input locations X = [xy,...,zx]" in matrix form, and

the corresponding function values g(X) = [g(z1),...,g9(xn)]" in vector form. Let m =
[m(z1),...,m(zy)]" and K denote the prior mean and covariance at the input locations,
with entries [K]; ; = k(x;, ;) for ¢,j € {1,..., N}. Then the function value g(x) at a test

point & and the function values g(X) at input locations X have joint Gaussian distribution

g(x m(x E(xz,x) k'
@] o [[r@] [t |
9(X) m k K
where k = [k(z,x,),...,k(z, )]’ is the cross-covariance at the test point and input

locations.

Given observations g(X) at input locations X, the posterior distribution for g(x) at test

point & becomes [Rasmussen and Williams, 2006]

plg(x) |z, X, g(X)) =N (u(z), 0*()) ,
p(x) =m(x) + k' K (g(X) —m), (2.3.1)

o} (x) = k(z,z) — k'K 'k.

GP regression utilises GP priors on unknown functions and the expressions in Equation (2.3.1)
to infer function value distributions at unexplored input locations. Note that the expressions
for the posterior mean and variance are directly equivalent to the expressions for the poste-
rior mean and variance in Equation (2.2.3). It follows from Equation (2.3.1) and observation

3 in Section 2.2 that the posterior variance o%(x;) = 0 at input locations x; € X.

In reality, observations are usually affected by measurement noise. If only noisy observations
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X

Figure 2.2: GP regression given noisy observations y (black dots) of an underlying function
g (solid line). The mean (dotted line) and two standard deviations (grey area) of the GP
prediction are plotted.

y = ¢g(X) + n can be made of the function g, with n ~ N(O0, 072]1) zero-mean Gaussian
measurement noise with variance 03, the function value g(x) at a test point @ and the
observed values y at locations X have joint Gaussian distribution
m(x) k(z,x) k'
pg(@),y |z, X) =N ; ;
m k K + 021
The posterior distribution for g(x) given noisy observations y is given by [Rasmussen and

Williams, 2006]

p(g(w) ‘ z, X, y) =N (:u‘(x)v o’ (x)) )
(@) =m(z) + k' (K + U%I)_l(g(X) —m), (2.3.2)

o (x) = k(z, ) — k' (K +021) k.

For the case of noisy observations, the posterior variance o(z) > 0 for all € RP=.

Figure 2.2 illustrates GP regression. Given noisy observations y; = g(z;) +n;, i =1,..., N,
of the function g, Equation (2.3.2) computes a mean prediction p(z) and corresponding
variance o2(z). We see that the variance is lower in regions near data than in regions

further away from data.
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2.3.2 Inference for Vector Function

For many applications, the unknown function g has multiple output dimensions: g : RP» —
RPv, D, > 2. We index the output dimensions of g, such that Y(q) denotes the d*™" dimension
of observation y. To avoid later confusion with other indices, the output dimension indices
will be written inside brackets through this manuscript. Multiple output dimensions makes
GP inference of the posterior distribution of g more complex. Similar to before, the input

RNXD

locations in matrix form are X € = and the corresponding observations Y € RN*Dy,

with [Y]i,(d) = Y(d),i> i=1,...,Nandd=1,...,D,.

One possible approach is to place independent GP priors gy ~ GP(mq)(-), k(- -)) on
each output dimension d = 1,...,D, of g. The assumption is that the output function
values g(1y(),...,9(p,)(x) are approximately independent for a given input x. Using the

independent GP priors, the posterior predictive distribution at a test point « is given by

plg(x) |2, X, Y) =N (u(z), S(x)) ,
wx) = [Mu)(ﬂC),.-.,u(13y>(9c)]T , (2.3.3)

S(x) = diag (0(21)(33), . ,U?Dy)(m)> .

where the means 11(q)(x) and variances a(zd) (x),d=1,...,D,, are given by Equation (2.3.1)

and Equation (2.3.2), for the case of noise-free or noisy measurements, respectively.

A different possible GP prior on g uses a linear combination of scalar base functions [Hel-

terbrand and Cressie, 1994; Seeger et al., 2004; Lawrence, 2015; Alvarez, 2017]
g(x) = a;j(@).
J

Independent GP priors §; ~ GP(m;(-), k;(-,-)) are put on the base functions g; : RP+ — R.

The linear coefficients a; are found from data. This yields a semi-parametric model.

In this manuscript, the former approach (independent GP priors on each output) is used, in

order to simplify computations.
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2.4 Covariance Functions

GP regression uses covariance functions k(x, ') = cov(g(x), g(z’)) to model the similarity
between function outputs g(x),g(«’) for different inputs x,2’. As an example, take the
affine function g.g(x) = a'x + b, with @ ~ N(0,02I) and b ~ N(0,02). The covariance

function & corresponding to this g.g is the linear kernel

2. T ./

k(x,x') = o’z ' +o?.

GP regression with the linear covariance function is equivalent to Bayesian linear regression.

For a function k to be a valid covariance function, the Gram matrix K, with elements
[K];; = k(x;,x;), must be positive definite for all choices of input locations {z;}Y; and

N > 0 [Rasmussen and Williams, 2006].

A covariance function k is said to be stationary if its value only depends on the distance
|lz — 2’| between input locations & and @', and not their specific values, i.e. k(xz,x') =
k(x + 8, 2' + 8) for all § € RP=. Tt is common to write stationary covariance functions as

functions of the distance measure

r= \/(:13 —z)\TA Yz — ),
where A = diag()\?,..., /\%I) is a diagonal matrix of squared length scales. Some common
stationary covariance functions are
e The radial bases function (RBF) kernel?: k(r) = p? exp (—37?).
e The exponential kernel: k(r) = p? exp (—7).
e The Matérn-3/2 kernel: k(r) = p? (1+ /3r) exp (—V/3r).
e The Matérn-5/2 kernel: k(r) = p? (1 + v/br + 2r?) exp (—V/5r).

—Q

e The rational quadratic kernel: k(r) = p? (1 + 5-r?)

2also known as the squared exponential kernel or Gaussian kernel
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where p? is the signal variance. Different covariance functions correspond to different prior
beliefs about the underlying function being modelled, e.g. how quickly it changes or if it
is periodic. Selecting the best covariance function is an art, and requires training and
experience. A common choice is the RBF kernel, which has some nice properties such as
being infinitely differentiable. For more information about the different covariance functions,
readers are referred to Rasmussen and Williams [2006]. This manuscript uses the RBF kernel

unless otherwise stated.

2.5 Hyperparameter Learning

GPs are Bayesian non-parametric models, but the mean and covariance functions may con-
tain hyperparameters whose values need to set appropriately. For the stationary covariance

functions defined in Section 2.4, the hyperparameters consist of the signal variance p? and

2

the squared lengthscales A. Often the noise variance o,

is unknown, and added to the list of
hyperparameters. The data X, y is commonly referred to as the training data, and is used
to learn the GP hyperparameters at training. For simplicity, it is common to normalise the
observed data y (such that avg(y) = 0 and var(y) = 1) and use the mean function m(-) =0

[Lawrence, 2015].

The hyperparameters are typically learnt by maximising the log-marginal likelihood
logp(y| X, p*, A, 07) < —y' (K +071) "'y —log |K + o71],

of the training targets with respect to the hyperparameters. Maximising the log-marginal
likelihood can be done using gradient-based non-convex optimisation methods. A fully
Bayesian approach places priors on the hyperparameters and integrates over them at pre-

diction. However, this is generally analytically intractable.

For notational simplicity, the conditional dependence on the learnt hyperparameters is not

written out in the expressions for the posterior predictive distributions

plg(x) |z, X, y) = plg(x) |2, X, y,p* A, 07).
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If the underlying function g is deterministic, then the noise covariance az = 0. This is
the case when ¢ is a black-box model that we wish to replace with a GP surrogate model.
Equation (2.3.1) gives the expressions for GP regression. However, the matrix K may be

ill-conditioned (e.g. if two training inputs are very close to each other), which can lead to

2

numerical issues [Neal, 1999]. To avoid this, we lower-bound or fix the noise covariance oy

by a constant, e.g. af] > 1E-6.

2.6 Sparse Gaussian Process Regression

The curse of dimensionality means that with increasing input dimensions, the amount of
training data required to accurately model a system grows exponentially. For large training
data sets, the matrix inversion (K + U%I)*1 in GP regression becomes a computational
bottleneck. The computational complexity of GP training scales as O(N?). Computing the
predictive mean and variance (in Equation (2.3.1) and Equation (2.3.2)) scales as O(N) and

O(N?), respectively (with the term (K + ¢2I)~'(y — m) pre-computed).

Various methods have been proposed to reduce this computational bottleneck by sparsifying
the GP regression. Sparse GP regression methods approximate the predictive distributions
by selecting a smaller set of P inducing points. These inducing points can either be a
subset of the original training data set [Smola and Bartlett, 2001; Seeger et al., 2003] or
pseduo-inputs [Snelson and Ghahramani, 2006; Titsias, 2009]. Sparse GP regression scales
as O(NP?) at training, and O(P) and O(P?) for computing the predictive mean and vari-
ance, respectively. The number P is chosen as a trade-off between predictive accuracy and

computational complexity.

Other methods of reducing the computational bottleneck of GP regression look at e.g. the
spectral representation of GPs [Hensman et al., 2018] or exploiting algebraic properties of
the Kronecker and Khatri-Rao tensor products on a grid of inducing inputs [Evans and Nair,
2018]. A review of sparse and variational GP regression methods—some of which can be

used for training sets with billions of data points—can be found in Liu et al. [2018].
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2.7 Prediction with Uncertain Inputs

In Section 2.3, the predictive distribution for g(x) is given for a deterministic test point
x € RP= using GP regression. However, there are many cases where the input x may be
uncertain, e.g. in control applications where « is a state estimate. For these cases, with
an unknown function g and unknown input x, we may still wish to compute the predictive

distribution of g(x).

Consider the general case of (possibly multi-output) GP regression, i.e. g : RP= — RPv,

Dy >1,
plg(@) |z, X, Y) = N(u(z), ().

If the input x is uncertain, e.g. * ~ N(u,, X;), the posterior predictive distribution is given

by marginalising out the input x
plo() | X, Y, py, o) = /p(g(fc)lw,X,Y) p(@|p,, Bs) de. (2.7.1)

Note that propagating a Gaussian distribution N (u,, ;) through a non-linear function g
yields a non-Gaussian predictive distribution. Hence, the marginal posterior distribution
in Equation (2.7.1) is generally analytically intractable. A common approximation of the
marginal posterior distribution is a Gaussian distribution with mean and covariance given

by the first two moments of the marginal posterior distribution (moment matching)

plg(z) | X, Y, 1, B0) = N (i, B)
o= By [u(@)], (272

2 = Ve [u(@)] + Es [£(2)]

Computing the mean fi and variance S in Equation (2.7.2), the first two moments of the
marginal posterior distribution, is itself often analytically intractable. They can be approx-
imated by propagating the Gaussian distribution N (u,, 3, ) through Taylor expansions of

the predictive mean p(x) and variance ¥(x) with respect to = [Girard et al., 2003]. If
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the GPs for all output dimensions d = 1,...,D, of g have RBF covariance functions, a
closed-form solution exists for fi and = [Quinonero-Candela et al., 2003; Deisenroth et al.,

2009].

For notational simplicity, let Vg¢ = 0¢(x) /0x|z—p, € RP= denote the partial derivative of a
function ¢ with respect to the input @ € R+, evaluated at the mean = = p,,. Furthermore,
let Voo = [vm{l),...,vm{Dy)}T € RPv*P=z denote the partial derivative of a vector
function ¢ with D, outputs, and V¢ € RPv*P=xDa jts Hessian. Note that Ved(z — p)

denotes the multiplication of V;¢ and (z — p), and not a function evaluation.

2.7.1 First-Order Taylor Approximation

The first-order Taylor expansion of pq)(x) and J(Qd)(w) with respect to @, around the point

T = p,, is given by

H(d) (CE) ~ Iu(d) (I'LJL') + vw,u(d) ((L’ - ,u/_,_) 5
iy () = 0y (1) + Vaoly (@ — ) -

With a Gaussian distributed input  ~ AN (p,,X,.), using the first-order Taylor expansions

yields

Ey [u(z)] ~ p(p,)
Ee [X(z)] = E(p,), (2.7.3)

Vo [1(2)] = VX, Ven' .

The expressions in Equation (2.7.3) are inserted in Equation (2.7.2) to yield the mean f

and covariance 3 of the marginal posterior distribution.
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2.7.2 Second-Order Taylor Approximation

The second-order Taylor expansion of i(q)(x) and a%d) (z) with respect to @, around the

point = p, is given by
1) (®) ~ iy () + Vaia (@ — p,) + 5@ = 1) Vapa (@ — 1),

C,—(2(1) (1?) ~ U(2d) (l"ﬂl) + vma(%i) (CE - “’I) + %(CI? - H:I:)Tvia(zd) (m - l"/:z;) .

With a Gaussian distributed input @ ~ N (p,, 2;), using the second-order Taylor expansions

yields the marginal mean 1 = E,, [u(x)] with elements approximated by

fia) = pay (1) + 5t (VapaSa) (2.7.4)

where we use the matrix identity a' Be = tr(Bea') and Eg[(z — p,)(z — p,)' ] = 2,

Similarly, approximating the expected value of the GP variance () using the second-order
Taylor expansions yields a diagonal matrix Eg [%(z)] =~ diag(q(1),---,4(p,)) With elements

q(4) given by
— 52 1 2 2
Ua) = 0(g)(Kz) + 5 b1 (vmg(d)2$> ) (2.7.5)

using the same matrix identity trick as in Equation (2.7.4).

The variance V [u(x)] &~ Q of the GP mean is a full matrix with elements

[Ql(a1).(2) = Vartta) ZaVailay) + 30 (Vi) Ze Vi) Se) » (2.7.6)

for di,dy = 1,...,D,. Figure 2.3 illustrates the difference between the first- and second-
order Taylor approximation; the marginal predictive distribution is Gaussian in both cases,
but in this case the mean is shifted slightly downwards using the second-order approach to

reflect the fact that the test point u, is almost at the location of the curve g(z) peak.
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,LLICE T ,LLII x

Figure 2.3: First- (left) and second-order (right) Taylor approximations of the marginal
predictive distribution (grey area on y-axis), given an input distribution (grey area on x-axis)
and Taylor approximation (solid line) of the function (dotted line). The marginal predictive
distribution is shifted slightly downwards for the second-order approximation compared to
the first-order one.

2.7.3 Exact Marginalisation

There are closed-form expressions for g and S for the case where the GPs for all output
dimensions d = 1,...,D, of g have RBF covariance functions [Quifionero-Candela et al.,
2003; Deisenroth et al., 2009]. Let p{;), A(g) and o ;) denote the RBF covariance function’s
signal variance, diagonal matrix of squared lengthscales and noise variance for the GP prior
g@ ~ GP(mwy(), k(). Additionally, let K4, Yy and mg) = m(q)(X) denote the
corresponding covariance matrix, training targets and prior mean. Then the marginal mean
f2 has elements fi(q) = ,B—gd)q(d), where B4 = (K@) + 0»12],(d)1)_1(y(d) —m(g)) and g4 has

elements given by
1 _
q<d)~,i = p%d)|2$A(_dl) + I|72 €Xp (7%(:1;7- - l‘l‘x)T(zz + A(d)) 1(:172' - IJ/:L')) )

for i = 1,..., N the training input index. The marginal covariance 3 has elements given by

Ba) QB dz) — Fdy)fids) » e1 # ez

] (ar),(a2) =
BaQBa) — /i%dl) + p?dl) —tr ((K(dl) + ‘75,((11)1)71(‘2) , di=ds,
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where the matrix Q has elements

_ k(dl)(miy uf[)k(dz) ((l"/], “:1:)

VIR]

ford,j=1,...,N, withR = 2, (A +A ) +Tand xi5 = A (@i — py) + AL (@ — ).

Qli; exp (xR Zaxij)

These closed-form expressions for g1 and 3 can be computed without inversion of 3., which
means that they can be used even for deterministic inputs, i.e. when 3, = 0 [Deisenroth,

2010).

The absolute values of the elements in 3, € RY and Q € RV*Y may be large, resulting
in a loss of precision when computing ﬁ(dl)Qﬂ(dQ). If the noise variances of] (a) Are very
small; this loss of precision may result in non-positive definite marginal covariance matrices

3. This ties back to the observation in Section 2.5 that we may need to lower-bound the

2

noise variance o, in order to avoid numerical issues.
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2. Gaussian Process Regression
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3 Optimal Design of Experiments

Design of experiments is the task of finding experimental conditions (inputs) that yield
observations (outputs) helpful in advancing the knowledge about the system being stud-
ied. Fisher [1926, 1971] (the latter originally published in 1935) did foundational work in
the design of experiments field. But simple design of experiments had been used e.g. in
agricultural field trials prior to this, with some success [Yates, 1964|. Classically, design
of experiments has considered coming up with a design space-filling set of experiments for
analysis of variance. The simplest method is to change one input at a time and observe the
effect on the system’s output. Fisher [1926] showed that factorial design, changing multi-
ple experimental conditions at a time, was shown to provide a stronger basis for drawing
conclusions about the input-output relationship, since it also allows the interaction between

inputs to be studied.

Classical design of experiments has a number of limitations. Perhaps the biggest limitation
is that the full set of experimental conditions is decided a priori. Not all data are equally
useful [Mc Mahon et al., 2014], and many experiments risk adding little or nothing to
what is already known. Experiments chosen a priori do not exploit knowledge gained from
preceding experiments, which can result in the execution of an unnecessarily large number of
expensive experiments. Classical design of experiments also do not account for constrained
design spaces, where combinations of experimental conditions may be infeasible (e.g. for

safety reasons).

Optimal design of experiments overcomes the limitations of classical design of experiments.

Optimal design of experiments finds experimental conditions by optimising some statisti-
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Stage I Stage 11 Stage III

Model Parameter

Initial analysis LT . .
discrimination estimation

Figure 3.1: Asprey and Macchietto’s [2000] model building process. After an initial analysis
in Stage I, a set of likely rival model candidates are passed to Stage II, where experiments
are designed to discriminate between them. The best model candidate found in Stage II
is passed to Stage III where additional experiments are designed to improve the model
parameter estimate.

cal design criterion. New experiments can be designed sequentially, exploiting information
gained from previous experiments. Design space constraints are easily handled through

bounds on the variables or constraints during optimisation.

This manuscript is concerned with optimal design of experiments for model discrimination,
where additional data is required to discriminate between a set of rival mathematical models.
This is Stage II in Asprey and Macchietto’s [2000] model building process (see Figure 3.1).

We can break down Stage II into the following steps (illustrated in Figure 3.2):

1. We start with an initial set of likely parametric model candidates, corresponding to
rival hypotheses about the underlying system mechanism(s) that we wish to under-

stand.
2. The models’ parameters are estimated from existing data.

3. We perform model discrimination based on how well the models can explain existing

data.

4. If more than one model remains a likely candidate, we design a new experiment to try

to discriminate between them.

5. After collecting observations from the new experiment, we return to step 2. to update
the model parameter estimates. This cycle continues while more than one model

remains a likely candidate and the experimental budget is not exhausted.

Note that parameter estimation is also carried out in Stage II, but only to provide enough
accuracy in the models to discriminate between them. In Stage III of Asprey and Macchi-

etto’s [2000] model building process, experiments are designed specifically to improve on the
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Initial set
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candidates

Parameter
estimation from
existing data

Model No
discrimination: Stop
>1 model remains?

Yes

Experimental
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exhausted?

No

Design new
experiment

Execute new
experiment

Figure 3.2: The model discrimination process.

parameter estimates.

Henceforth, the term “design of experiments” will refer to optimal design of experiments.
Design of experiments for parameter estimation (Stage III in Figure 3.1) has received more
attention in literature than design of experiments for model discrimination [Ryan et al.,
2016]. Atkinson [2008], Tommasi [2009] and Waterhouse et al. [2009] investigate combined
or hybrid design criteria for parameter estimation and model discrimination. Galvanin et al.

[2016] use multi-objective optimisation to find designs with good trade-off between model
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Experiment u

Figure 3.3: Existing experimental data D and two rival models f; and f,; predicting the
outcome of possible future experiments. Additional D, reveal that model f; yields more
accurate predictions than model fs.

discrimination design criteria and parameter estimation design criteria. However, exper-
imental design for both model discrimination and parameter estimation tends to perform
sub-optimally in terms of model discrimination [Ryan et al., 2016]. This work mainly consid-
ers other aspects of the experimental design problem than the precise form of the objective
function, hence we will focus solely on experimental design for model discrimination. But
much of the work presented here is applicable to other problems in the optimal experimental

design area.

3.1 Design of Experiments for Model Discrimination

The fundamental principle of design of experiments for model discrimination is selecting
the next experimental point where the model predictions differ most [Hunter and Reiner,
1965]. The task is to find an appropriate measure of this difference in model predictions
as a function of the model inputs that can be maximised. Figure 3.3 shows an example of
two rival models f; and fs. They both fit the existing experimental data D equally well.

Additional experimental observations D, reveal that model f; is a better candidate.
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The measure of difference between model predictions should incorporate the level of confi-
dence in said model predictions. Uncertainty in the model predictions comes mainly from
uncertainty in the model parameters, which are tuned by fitting the model to noisy observa-
tions. The measurement noise is commonly assumed to be zero-mean Gaussian distributed
with known (or upper-bounded) covariance X, [Steimer et al., 1984; Ette and Williams,
2004; Tsimring, 2014]. Skews in the noise distribution that make the Gaussian distribution
a poor approximation can often be handled, e.g. through a power transformation of the data

[Box and Cox, 1964].

Let each model f;, i =1,..., M, assume experimental observations y given by
Yy= f’b(u7 91) +v,

for input w, where 6; are the model parameters and v are assumed to be independent
and identically (e.g. Gaussian) distributed experimental measurement noise terms. Let
uy = {u,...,uny}and y,.5 = {y1,...,yy} denote the experimental conditions (inputs)
and observations (outputs) from N experiments. Due to measurement noise and inherent
system stochasticity, there will be uncertainty in the best-fit model parameter estimates
6;. This model parameter uncertainty can be accounted for at prediction by computing the

marginal predictive distributions

p(fi(w) [w, v, y1.n) = /p(fi(uyf)i))p(@i |u1:n, Y1) 46 (3.1.1)

Design of experiments for model discrimination is carried out by accounting for both un-
certainty due to measurement noise v and model parameter uncertainty. The optimal next

experiment is found by solving

u* =argmaxBy g, 6y |uin,y,n 0@ 155 far)] s (3.1.2)
u

where U(-) is an appropriate statistical design criterion. However, the marginal predictive
distributions in Equation (3.1.1), and hence E[U(-)], are generally analytically intractable.

In literature there are essentially two approaches for solving this problem:
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e The analytical approach, where analytical and Gaussian approximations are used to

find closed-form solutions for u*.

e The data-driven approach, where samples are drawn from p(0; | u1.n,¥y;.y) and used

to solve for u* using Monte Carlo techniques.

This section describes the difference between the analytical and data-driven approaches in

more detail.

3.2 The Analytical Approach

Methods for tackling the design of experiments for discriminating simple, analytical models
have been around for over 50 years. The term analytical, as used here, refers to the ability
to find closed-form expressions for the gradients 9¢(z)/0z of a function £ with respect to
its input z. The analytical approach to design of experiments uses a combination of linear
and Gaussian approximations to find closed-form expressions for the experimental design

objective function with respect to the input u.

The marginal predictive distributions in Equation (3.1.1) are assumed to be approximately

Gaussian

pUfiw) [, wnn, yin) = N (fiw,0).5(w) |

where 6; denotes the maximum a posteriori parameter estimate. Similarly, the measurement
noise is assumed to be Gaussian distribution v ~ A(0,3,). In order to compute the
approximate marginal covariance ii(u), the analytical approach [Prasad and Someswara
Rao, 1977; Buzzi-Ferraris et al., 1984] approximates the model parameters as being Gaussian

distributed N (@)i, 3y,;) around él The covariance ¥y is given by a Laplace approximation

N il
syt a3 Uilun O o Ofiun.6)

. 3.2.1
00, 0,-b, Y 00; 0,-0, ( )

n=1

Note that X, ! is the Fisher information matrix. If the Fisher information matrix is singular

it means the model parameters poorly estimable or unidentifiable [Jacquez and Perry, 1990].
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In such situations, the Laplace approximation of the model parameter uncertainty is not
useful. Given an invertible Fisher information matrix, or different estimate of the model

parameter covariance Xy, the marginal covariance il(u) at input w is given by
Si(u) = Vo f] (u)p: Ve fi(u). (3.2.2)

Hence, model f; predicts an experimental observation y for input u to follow the Gaussian

distribution
y~N (fi(w 0,), Si(u) + 2y> : (3.2.3)

To simplify notation in this section, we let f; = f;(u,8;) denote the mean model prediction,
and ¥; = ¥;(u) + =, the um of the model prediction covariance and measurement noise

covariance. The dependence on the input w is implicit.

3.2.1 Model Discrimination Criteria

Given M rival models, we are interested in discarding inaccurate models. The goal is to
find the “true” model that correctly explains the system we are studying. The analytical
approach to design of experiments for model discrimination uses Equation (3.2.3) to compute
a closed-form Gaussian approximation for the likelihood p(y|w). Given n =1,..., N input
and observation pairs (u,,y,,), we wish to compute an accuracy score for each model to

guide the model discrimination.

Box and Hill [1967] propose a version of the Bayes factor, i.e. the likelihood ratio of two
models, for M models. Assuming sequential experiments, after the N*" observation is made,

Box and Hill [1967] compute the normalised model posterior likelihood for model i as

- N@n | fin ZiN)miN_1
" Zj N(yy | TN BiN)miN-1]

(3.2.4)

with m; 0 = p(f;) model f;’s prior probability. Box and Hill [1967] use the normalised model
posterior likelihoods 7; y to rank models against each other. The closer a model’s normalised

posterior likelihood is to 1, the more likely that it is the “true” model.
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Buzzi-Ferraris and Forzatti [1983] criticise the normalised model posteriors m; x by pointing
out that observing the same values y,. in different order will yield different normalised
model posteriors 7; ny, which contradicts common statistical sense. Buzzi-Ferraris and
Forzatti [1983] and Buzzi-Ferraris and Manenti [2009] note that given Equation (3.2.3), under
the null hypothesis (“the model is correct”), model f;’s prediction errors €pred.in = fim—Yn
should be zero-mean Gaussian distributed with variance X,. This means the sum of squared

normalised prediction errors Epreq.,; should follow a x2(¢)-distribution

N

Epred.,i = Z (.fzn - yn)T 2;1 (fz,n - yn) ~ Xz(g) ’

n=1

with £ = N x D, — Dy ; degrees of freedom, with D, the number of output dimensions and

Dg,; the number of model parameters for model f;. Let x? denote model f;’s x? score

Epred. i
Xi = / X2, y)dy, (3.2.5)
0

where x2(¢,~) denotes the probability density function of the x2(¢) distribution, evaluated
at 7. Buzzi-Ferraris and Forzatti [1983| propose finding inaccurate models using a x? test,

where models are discarded if their score x? score is below a given threshold, e.g. x? < 1073,

A well-known quality metric for ranking models against each other is the Akaike information
criterion [De Leeuw, 1992]. For Gaussian predictive distributions, the Akaike information

criterion for model 7 is given by

N
AICz = 2D9,i -2 Z IOgN (yn ‘ fi,na E’i,n) .

n=1

The model with the lowest Akaike information criterion has the best goodness-of-fit. Akaike
information criterion rewards goodness-of-fit and penalises model complexity. Using the
Akaike information criterion, Michalik et al. [2010] define the relative Akaike weights w; for

a set of M rival models as

AIC;

= — 3.2.6
Zj]\/il AIC; ( )

Wi
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fi(u,0;) / Design utility

Experiment u

Figure 3.4: Analytical marginal predictive distribution approximations computed as in Equa-
tion (3.2.3) for two rival models fi, fo. The solid and dashed lines are the mean predictions,
and the shaded areas denote two standard deviations. The marginal distributions are used
to compute the design criterion E[U(-)]. In this example, the design criterion is Dpp.

The closer a model’s Akaike weight w; is to 1, the more likely that it is the “true” model.

3.2.2 Analytical Design Criteria

To solve for u* in Equation (3.1.2), the analytical approach proceeds to finding a closed-
form design criterion D,,(-) utilising the rival models’ marginal predictive means f, and
covariances X;. Figure 3.4 shows the predictive distributions N (fi(u,8;), %:(u) + 3,) for
two rival models fi, fo, and a corresponding design criterion E[U(-)]. The design criterion

is maximised where the divergence between the marginal predictive distributions is largest.

Possibly the earliest recorded design criterion is the Mahalanobis distance between the mod-
els’ predictive means, proposed by Hunter and Reiner [1965]. Let Dygr denote the Hunter
and Reiner [1965] design criterion, which has been extended to multiple target dimensions
and M > 2 rival models, e.g. by Espie and Macchietto [1989],

M-1 M

Dur(uw) =Y > (fi—F)'QU:i—f)), (3.2.7)

i=1 j=i+1
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where Q is a diagonal scaling matrix. This design criterion is popular in many practical
applications, mainly because of its simplicity. Atkinson and Fedorov [1975] define a T-
optimality criterion and argue that the Dyg is the only design criterion that can realise

T-optimal experimental designs.

Box and Hill [1967] criticise the Equation (3.2.7) design criterion for not considering pa-
rameter uncertainty and experimental noise, i.e. maximising the difference between model
predictions without regard for the level of confidence in the predictions’ accuracy. Instead,
Box and Hill [1967] propose measuring the information gain of an additional experimental
observation y  ; through the change in Shannon entropy Hs y4+1 = Zﬁl i N+1 108 T N1,
where m; yy1 is model ¢’s normalised posterior likelihoods defined in Equation (3.2.4). From
this, Box and Hill [1967] derive a new design criterion, extended to D, > 2 output dimensions

by Prasad and Someswara Rao [1977],

M-1

DBH (u) = Z

1=

NE

mivmin { (EET + 8,5 - 21)
| (3.2.8)

+(Fi— £ T+ -5

j=i

-
+

The design criterion in Equation (3.2.8) is the upper bound on the expected Shannon entropy
change Ey [Hg n11] — Hs v from the next observation yy, ;. Experiments are conducted

until 7; 5 ~ 1 for some model ¢, or until the experimental budget is exhausted.

Meeter et al. [1970] note that it seems strange to maximise the upper bound on the expected
change in Shannon entropy rather than the lower bound. In a series of papers [Buzzi-Ferraris

and Forzatti, 1983; Buzzi-Ferraris et al., 1984, 1990], another design criterion is proposed

M-1 M
DBF(U) = Z Z { tr (221](21 + Ej)*l)
i=1 j=itl (3.2.9)

(- FT )N - )}

The Dpr design criterion is a heuristic based on the cross-covariance of different models’
prediction errors. It can also be seen as a generalisation of Dyg that incorporates parameter

uncertainty [Hoffmann, 2017, p. 5].
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Figure 3.5: (a) An example of model aggregation, where {f1, fo} and {f3, f1} pairwise yield
similar predictions. Given data, we can discriminate between groups of model pairs {f1, fo}
and {fs3, f4} but may be unable to discriminate between models intra-pair. (b) No model
aggregation. Model aggregation may affect model discrimination [Michalik et al., 2010].

[Buzzi-Ferraris and Forzatti, 1983; Buzzi-Ferraris et al., 1984, 1990] use the 2 test for
model discrimination. Experiments are conducted until only one model remains, all models
have been discarded, or the experimental budget is exhausted. For comparing two models
(M = 2), the Dpr design criterion also has the interpretation that if Dpp(u) is not “suf-
ficiently larger than 17, the models cannot be discriminated [Buzzi-Ferraris and Forzatti,
1983; Buzzi-Ferraris, 2010], which can be used as a stopping criterion. Schwaab et al. [2006]
derive a similar design criterion to Dpp consisting of the second term inside the sums in

Equation (3.2.9) weighted by each model’s prediction error x? probability.

Michalik et al. [2010] argue that the design criteria Dpy in Equation (3.2.8) and Dgr in
Equation (3.2.9) reward model lumping, i.e. model aggregation, where the predictions of
some models are similar but far apart from predictions of other model aggregations (see
Figure 3.5). An observation at a point with model aggregation may determine whether a
group of models are more accurate than another group of models, but does not discriminate
between models within each of those groups. This is an interesting engineering trade-off:
the user may wish to identify the single best model, but significantly discriminating between
model groups may be more practical than partially discriminating between many models

[Buzzi-Ferraris, 2010].

To avoid sampling at model aggregation points, Michalik et al. [2010] draw on the Akaike

information criterion weights w; defined in Equation (3.2.6) to construct the heuristic design
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criterion

M

5 _ p(fi) , 3.2.10
Aw (u) ;Zﬁﬁ’(p (=3(fi = F))TZ7 N (Fi— ;) + Doi — Dy ;) ( )

with p(f;) model f;’s prior probability. Experiments are conducted until w; =~ 1 for some

model ¢ or until the experimental budget is exhausted.

3.2.3 Limitations of the Analytical Approach

Most industrially relevant models are not analytical. They are often, from a practical point-
of-view, complex black boxes of legacy code, e.g. large systems of ordinary or partial differ-
ential equations. We can evaluate the models f;, but derivatives with respect to the input
w and model parameters 6; are not readily available. When the model is noisy, e.g. due to

discretisation or sampling, gradients may be meaningless.

Specialist software can retrieve the gradients from systems of ordinary or partial differen-
tial equations, but this requires implementing and maintaining the models in said specialist
software packages. The number of function evaluations needed for finite-difference gra-
dient approximation may also be computationally prohibitive. Automatic differentiation
[Neidinger, 2010; Farrell et al., 2013; Baydin et al., 2018] can be used to retrieve gradient
information from some models, but will not work e.g. for models with non-smoothness and
discontinuities [Conn et al., 2009, pp. 3-5; Martelli and Amaldi, 2014; Boukouvala et al.,
2016]. These may be due to switches (if/else statements) or mathematical models that
require solving an optimisation problem. For model discrimination, it is desirable to be
agnostic with regards to the software implementation or model type, since this flexibly (i)
allows faster model prototyping and development, and (ii) satisfies the personal preferences

of researchers and engineers.
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3.3 The Data-Driven Approach

We use the term data-driven to refer to approaches that do not rely on closed-form ap-
proximations for the models’ marginal predictive distributions. Typically the data-driven
methods rely on Monte Carlo techniques, and attempt to solve the design of experiments
objective function in Equation (3.1.2) directly, without resorting to Gaussian approxima-
tions for the distributions involved. Data-driven methods to accommodate non-analytical
models have developed in parallel with increasing computer speed. These methods are typ-
ically closer to fully Bayesian than the classical analytical methods, e.g. Liepe et al. [2013]
and Dony et al. [2017]. Statisticians have often focused on design of experiments (solving
the optimisation problem) and model discrimination (the form of the optimisation problem)
separately [Chaloner and Verdinelli, 1995|. Criteria for model discrimination are handled

separately, usually under the name of model selection or hypothesis testing.

Vanlier et al. [2014] approximate the marginal predictive distributions of M models and
their Jensen-Shannon divergence using Markov chain Monte Carlo (MCMC) sampling and
a k-nearest neighbours density estimate. This density estimates become less accurate as the
number of experimental observations y,., increases [Vanlier et al., 2014] and the method is

computationally intensive [Ryan et al., 2016].

Ryan et al. [2015] use a Laplace approximation of the posterior model parameter distribution
p(0| D, f) combined with importance sampling. Drovandi et al. [2014] develop a method
based on sequential Monte Carlo (SMC) that is faster than using MCMC. Woods et al.
[2017] use a Monte Carlo approximation of E[U(-)] on which they place a Gaussian process
prior, and maximise E[U(-)] using Bayesian optimisation.

Figure 3.6 shows an example of data-driven design of experiments. Samples éi,j, j =
1,..., Nsample are drawn from the model parameter distributions p(@;|D, f;) of two ri-
val models f; and fo. The models are evaluated for the sampled model parameter values

0;; and inputs u;, and the corresponding predictions y; ; used to approximate the design
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fi(u, 0;) / Design utility

Experiment u
Figure 3.6: Samples are drawn from the model parameter distributions of two rival models

f1 and fo. The models are evaluated for the sampled model parameter values and inputs w,
and the predictions used to approximate the design criterion E[U(-)] in Equation (3.3.1).

criterion E[U(+)]. In this toy example the design criterion is computed as a moving average

j+n

1 (Y15 — y2.5)?
E[U = E d = 3.3.1
[ (UJ)} m & U%,j +U§,j ( )
with approximated variances OiQ,j = V¥ij—n,---,¥ij+n) and window size n = 10. The

inputs u; are assumed to be ordered, such that u;j_; < u; < ujyi. As the sample size
Nsample increases, the approximated design criterion is expected to converge on the true

design criterion.

3.3.1 Limitations of the Data-Driven Approach

These methods use a Monte Carlo-approach to agnostically accommodate non-analytical
models but require exhaustive model sampling in the model parameter space. On a case
study with four models, each with ten model parameters, and two design variables, the
Vanlier et al. [2014] MCMC method requires six days of wall-clock time to compute two
sets of four marginal predictive distributions. This cost is impractical for pharmacokinetic

applications, where a physical experiment takes approximately 1-4 days. SMC methods
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can converge faster than MCMC methods [Woods et al., 2017]. But SMC methods can
suffer from sample degeneracy, where only a few particles receive the vast majority of the
probability weight [Li et al., 2014]. Also, convergence analysis for MCMC and SMC methods
is difficult.

Furthermore, these methods are only for design of experiments. Once an experiment is
executed, the model discrimination issue remains. In this case the marginal predictive

distributions p(f;(u) | w,u1.n,¥y;.5) Would enable calculating the model likelihoods.

3.4 Discussion

The optimal design of experiments for model discrimination literature has focused on either
classical analytical approaches or Monte Carlo-based approaches. The former is computa-
tionally cheap but limited in the model structures and approximations it can accommodate,
whereas the latter is flexible and accurate but may be computationally expensive. Hence,
there is a trade-off between flexibility, accuracy and computational speed. The same goes for
model discrimination, where the analytical approach uses closed-form model discrimination

criteria and the data-driven approach has to rely on e.g. Monte Carlo approximations.

Three different model discrimination criteria were introduced in this chapter. We choose to
refer to the process of (ideally) finding the “true” model as model discrimination. Another
common term is model selection. Some researchers distinguish between these two for an
important reason: The Box and Hill [1967] normalised model posterior likelihoods 7; and
the Michalik et al. [2010] Akaike weights w; ranks models against each other and selects
the model with the highest score implicitly they are rejecting all but the least inaccurate
model; The Buzzi-Ferraris and Forzatti [1983] method of using the x? test discriminates
between models by discarding models that inadequately describe the observed data. The
normalised model likelihoods and Akaike weights can vary significantly between consecutive
experiments, especially when there are few available observations. Using the x? increases
robustness against inaccurate models, usually at the cost of having to run more experiments.
This will be demonstrated in later chapters. The x? is the most commonly used test in

practice.
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Some research, e.g. Quaglio et al. [2018], in the area of design of experiments for parameter
estimation has considered structural model uncertainty. In the parameter estimation setting
the model structure is fixed, but an incorrect model structure assumption may negatively
impact the accuracy of the model parameters (assuming some “true” parameter values exist,
e.g. a stoichiometric coefficient or reaction rate). However, for model discrimination the goal
is to identify the most accurate model structure. Hence, work in this area does not consider

structural uncertainty.
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4 Jensen-Rényi Design Criterion

This chapter is based on Sections 3, 6 and 7 of Olofsson et al. [2019a].

The fundamental principle of sequential experimental design for model discrimination says
to select the next experimental point where the model predictions differ the most [Hunter
and Reiner, 1965]. The measure of how much the models differ is the design criterion and

the design optimisation problem maximises this design criterion.
The Dugr, Du, Der and Daw design criteria were introduced in Section 3.2.

e The Dyg criterion is the sum of pairwise squared distances between the means of the

rival marginal predictive distributions.

e The Dpy criterion is an upper bound on the change in Jensen-Shannon entropy from

making an additional observation.

e The Dpgp criterion is a heuristic based on the cross-covariance between the models’

prediction errors.
o The Daw criterion is a heuristic based on Akaike’s information criterion.

All four design criteria Dpp, Dpr and Daw implicitly reward divergent model predictive
distributions. This chapter introduces a novel design criterion D based on the quadratic
Jensen-Rényi divergence. The Djr design criterion explicitly maximises the divergence

between model predictive distributions.
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4.1 Jensen-Rényi Divergence

The general expression for the divergence between i = 1,..., M predictive distributions

gi(u) for design u is

M M
Div[H](u) = H (Z wigi(u)> — > @iH(gi(w)), (4.1.1)
i=1 i=1

where w; are weights associated with the corresponding models, and H is some entropy
measure. Vanlier et al. [2014] propose a design criterion based on the Jensen-Shannon diver-
gence between model predictive distributions. The Jensen-Shannon divergence Div[Hg] is
the divergence measure corresponding to the continuous Shannon entropy Hg, or differential

entropy. For a distribution G(+), the Jensen-Shannon divergence is defined by

Hs(G) = — / G(7)log G(v)d

with information measured in natural units (logarithm base e). Computing Div[Hg](u)
as in Equation (4.1.1) is intractable, even for the case of Gaussian distributions g;(u) =
N(f;,%:). Hence, we can either approximate the divergence measure using Monte Carlo
techniques [Vanlier et al., 2014, or find a different entropy measure that yields a closed-form
solution for the divergence of Gaussian distributions. Given the computational complexity
of the former, we choose the latter option and turn to the Rényi [1965] entropy measure, a
generalisation of the Shannon entropy. Specifically, we look at the quadratic Rényi entropy

H> defined as

Hy(G) = —10g/G(7)2d7.

For a Gaussian distribution g;(u) = N'(f;, %), f; € RPv, the quadratic Rényi entropy is

given by

Ha(gi(w)) = 22 log(4w) + Llog || .
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For a mixture of Gaussian distributions G = > ; wigi(u), the quadratic Rényi entropy is

given by [Wang et al., 2009; Nielsen, 2012]

M M

logzz D/2 p(—%qﬁzj(u)) (4.1.2)

=1 j= 1
where, using }Z—j =1f.+ E;Ifj, the function ¢;;(u) is given by

1

Gis(w) = FIS T o+ F1 2 = Fy (B0 ) T R

+log |=;| + log |Z;] + log | ;' + E;1|.
By noting that ¢;;(u) = log |2X;|, we rewrite the expression in Equation (4.1.2) as

2 1—1
R w;
Hy(G) = 2 log(2w) — 10g; W +2 Z wiwjexp (—5¢i5(w)) |
which reduces computational effort. After these reformulations, the quadratic Jensen-Rényi

divergence Div[H3](u) has a closed-form expression. We let
Djgr(u) = Div[Hs](u), (4.1.3)

denote the quadratic Jensen-Rényi divergence design criterion.

The weights wo; are not uniquely defined in Djr. A natural way to define the weights
would be as the model likelihoods w; = p(f; | data). This is similar to the normalised model
likelihoods m; y of Box and Hill [1967] or the Akaike weights w; of Michalik et al. [2010].
Another possibility is to let the weights t; act as switches that determine whether models
are still considered likely candidates. This is the approach of Buzzi-Ferraris and Forzatti
[1983], setting w; = 1 if a model f; passes the x? test and w; = 0 otherwise. Schwaab et al.
[2006] use the x? scores in Equation (3.2.5) as weights. The Djg design criterion is not
derived from a specific method of model discrimination, but from the fundamental principle
of maximising model predictive divergence. Thus, it is agnostic to the methods used for

model weighting and discrimination.
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D...(u)

_DBH(U) ...... DBF(U) ""DAW(U) "'DJR(U)

Figure 4.1: Comparison of discrimination criteria (bottom row) for three different sets of pre-
dictive distributions (top row): constant variance (left), linearly decreasing variance (centre)
and linearly increasing variance (right).

4.2 Design Criteria Trade-Offs

Figure 4.1 compares the different design criteria (bottom row) for three sets of different
predictive distributions (top row) for four equally weighted models (Vi: m; = 1/4). The
means f;(u) of the predictive distributions are the same in each plot, but the variance o2 (u)

changes. The design criteria have all been normalised to lie in the range [0, 1].

In the left-most Figure 4.1 column, the variance is constant. The top plot shows a model
aggregation example. The Dpp and Dpy criteria prefer a small u, where {f;, fo} and
{fs, f1} pairwise yield identical predictions, but the divergence between e.g. f; and f3 is
large. For constant covariance, i.e. where the predictive covariance is effectively independent
of u, as in the left-most example in Figure 4.1, the Dy and Dpp design criteria are equal
to Dyr multiplied by a constant. The Daw and Djg criteria, on the other hand, are
maximised for medium w, where all model predictive distributions are divergent. In the
middle Figure 4.1 column, the variance decreases linearly with u. In the right-most column,

the variance increases linearly. In the middle and right-most columns, the change in the
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D...(u)
D, (u)

...... Dpr(u) -=+=Daw(u) === Dyr(u)

Figure 4.2: Comparison of discrimination criteria (bottom row) for three different sets of
predictive distributions (top row) with constant covariance increasing from left to right.

0 (i) 2 (i)

Figure 4.3: Optimal design u* = arg max,, D (u) when variance o2 increases for rival models
in Figure 4.2. Variances corresponding to the (i) left-most, (ii) centre and (iii) right-most
plots of Figure 4.2 are marked on the ¢? axis. Dpy and Dgp are on top of each other.

variance significantly impacts the Dpy and Dgpp criteria maxima. The Daw and Djr

criteria consistently favour a medium u, i.e. aim for complete model discrimination.

In all three cases in Figure 4.1, none of the predictions f;(u) &+ o;(u) overlap for medium-
sized u. Using Michalik et al.’s (2010) model aggregation-based reasoning, placing the next
experiment at moderate u yields complete model disaggregation. However, with increasing
model prediction uncertainty, the attractiveness of an experiment in the centre decreases,
as shown in Figure 4.2 for the constant variance scenario. With increasing uncertainty, the

Djg criterion peak shifts to smaller u before the Daw criterion peak (see Figure 4.3).
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We note some similarity between the Daw and Djr design criteria. The Daw and Djr
design criteria contain inverse exponential terms with the weighted squared differences be-
tween model predictions. These terms likely dominate in the small-variance scenario in
Figure 4.1. However, the Djr design criterion also contains pure covariance terms, similar
to the Dgy and Dgp criteria. The Daw criterion does not have these terms. This is why,
as the covariance grows large, the peak of the Djr criterion shifts to smaller u before Daw

in Figure 4.3.

Buzzi-Ferraris [2010] argue that complete discrimination between groups of models is prefer-
able to partial discrimination between all models. Figure 4.1 and 4.2 show that the design
criteria represent different trade-offs between the risk of partial discrimination, and the

reward of complete discrimination.

The design criteria are normalised to lie in the [0, 1] range for each plot independently.
Hence, the maximum value of the design criteria in the left-most and right-most plots in
Figure 4.2 are not the same, i.e. all design criteria yield higher values for small u in the

left-most plot over small u in the right-most plot.

4.3 Comparison of Design Criteria Performance

In this section, the performance of the new design criterion DR is compared to the existing
design criteria in literature for an ammonia synthesis case study. We ran a large number of
simulations to gather relevant performance statistics. Every simulation has a different noise
realisation. In each simulation, we follow the model discrimination process in Figure 3.2,

repeated here as Figure 4.4 for convenience.

4.3.1 Performance Metrics
Let DC and MD denote the chosen design criterion and method of model discrimination,
respectively. Section 3.2.1 describes three different methods of model discrimination:

o Normalised Gaussian posteriors m; xy with updates [Box and Hill, 1967]. The procedure

terminates when 3 : m; x > 0.999.
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Initial set
of model
candidates

Parameter
estimation from
existing data

Model No
discrimination: Stop
>1 model remains?

Yes

Experimental
budget Yes
exhausted?

No

Design new
experiment

Execute new
experiment

Figure 4.4: The model discrimination process (repeated Figure 3.2).

o x? test [Buzzi-Ferraris and Forzatti, 1983], where a model 7 is deemed inadequate and
discarded if x? < 0.01 for N - D,, — Dy,; degrees of freedom, with N = |D| the number

1

of available data points.

e Akaike weights w; [Michalik et al., 2010]. The procedure terminates when i : w; >
0.999.

Alternatively, simulation terminates after reaching the maximum number of additional ex-

periments.
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For a given case study and combination of design criterion and method of model discrimina-
tion, let @y denote the number of experiments executed before simulation ¢ terminated. A
simulation terminates either when only one model candidate remains, all models have been
discarded, or the experimental budget is exhausted. Let fi.4e denote the data-generating
(“true”’) models, and let f(g €{f1,--.,fm,0} denote the result of the simulation, with fg =0
if all models have been discarded or the experimental budget is exhausted. Using a, and fg

we define the set of successful simulations S
S={l: fo = furue},
the set of failed simulations F
F=Al: fo# fune A fo #0},
and the set of inconclusive simulations Z
I={0: fi=10}.

From this we define the statistics in Table 4.1: the average number of additional experiments

required for successful model discrimination

A= ﬁ > e, (4.3.1)

les

the standard error of A

1 . 2
SE = \/ISI(ISU ;S (6o — A)?, (4.3.2)

and the success (S), failure (F) and inconclusive (I) rates

_ s b7 _m
SIHFFE T TSI+ E T ST+ 1+ 1

S (4.3.3)

For good performance, the average A should be as low as possible. A small SE value indicates



77

the average number of additional experiments required for
successful model discrimination (Equation (4.3.1)), i.e. identifying the correct
model as the data-generating model.

SE

the standard error of the average number A of additional
experiments (Equation (4.3.2)).

the success rate, i.e. the percentage of simulations in which
the correct model was identified as the data-generating model
(Equation (4.3.3)).

the failure rate, i.e. the percentage of simulations in which
a model other than the correct model was identified as the
data-generating model (Equation (4.3.3)).

the rate of inconclusive simulations, i.e. the percentage of
simulations in which more than one model-or no models in the
case of the y? test-remain when the experimental budget has
been exhausted (Equation (4.3.3)).

4.3.2

Table 4.1: Statistics collected in the simulations.

the estimated A is close to the “true” average. The success rate S should be close to 100 %.
An inconclusive result (true or false negative) is preferable to a failed result (false positive),

since selecting an inaccurate model can incur a large cost at a later stage.

Case Study 1: Ammonia Synthesis

The first case study considers four different models for synthesis of ammonia (NHj3) from
hydrogen (Hz) and nitrogen (N2) [Buzzi-Ferraris et al., 1990]. There are Dy; € {2,4,6}
parameters per model, D, = 1 observable output, and D, = 3 design variables: pressure
P € [300atm, 350 atm], temperature 7" € [703 K, 753 K] and inlet ammonia mole fraction
Xnus € [0.1, 0.2]. Each simulation has Ny = 5 initial measurements and a maximum budget

of 40 new experiments. The models are given by

¢N2 - ¢NH3/(¢?—I2K§q)

Model 1: f; =

Ol¢NH3/¢3H/22 '
Model 2:  fo = PN, PH, — ¢NH3/(¢H2Keq)2 7
CréNm,
1/2 ,3/2
Model 3:  f3 Ny Pty — ONH;/Keq

" Cignm, + Ca(dn, /o) /2
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1/2 ,3/2 i
Model 4 : f4 N2 ¢H2 d)NH:s/ eq

" Ciénm, + Cadn, + Csdnm, /on,

where the fugacities are given by ¢s = Pxsvs for s € {Hs, No, NH3}. We assume inert-free,
stoichiometric reaction, which gives the mole fractions xn, = i (1 — x~u,) and xH, = 3XN,-

The activity coefficients v for the reaction are given by [Dyson and Simon, 1968|:

Y, = exp | Pexp (0.541 — 3.8402 - T%12%)

— P?exp (—15.98 — 0.1263 - %) (4.3.4)

300 (exp(—P/300) — 1)
exp (5.941 +0.011901 - 7)) |’

N, = 0.93431737 + 3.101804E-4 - T + 2.958960E-4 - P ( )
4.3.5

— 2.7072798-7 - T? + 4.7752078-7 - P?,

YNH; = 0.14389960 4+ 2.028538E-3 - T' — 4.487672E-4 - P ( )
4.3.6

— 1.142945E-6 - T? 4+ 2.761216E-7 - P2.

The thermodynamic equilibrium constant K.q is given by [Gillespie and Beattie, 1930]:

10g, Keoq = 2.6899 — 2.69112210g,, T — 5.519265E-5 - T )
4.3.7

+ 1.848863E-7 - T2 + 2001.6/T .

The model parameters appear in the coefficients C; = exp (Hjl —0j2 T*TZUU). The bounds on
the model parameters are 6;; € [0.1, 10] and ;5 € [0.1, 100]. We follow [Buzzi-Ferraris et al.,
1990] by generating experimental data from model 1 with 8 = [3.68, 11.8] and experimental

noise variance X, = o, = 90.

Table 4.2 compares the novel design criterion Djr to the classical design criteria Dgy,
Dgr and Daw for the ammonia synthesis case study. The comparison also includes the
alternative of not optimising the design, but randomly and uniformly sampling the next
experimental design, denoted U. We use the analytical expressions in Section 3.2 to ap-
proximate the models’ marginal predictive distributions N'(f;,¥;). Table 4.2 shows the

simulation performance statistics from 100 sets of random initial measurements.
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MD TN X7 w;

DC Dpgu Djr U Dgr  Djr U Dxw  Dir U
A 20.85 22.24 34.50 | 20.56 21.12 14.50 | 7.11 6.61 21.25
SE 0.82 0.72 1.77 1.43 1.22 3.02 047 049 1.08

S[% || 81 87 2 81 84 10 | 100 100 73
Fl% || o 0 0 1 1 1 0 0 2
L% || 19 13 98 18 15 89 0 0 25

Table 4.2: Comparison of design criteria performance for the ammonia synthesis case study.
The Djgr design criterion is compared to the classical design criteria Dy, Dpr and Daw
for their corresponding model discrimination methods (see Section 3.2). The columns U
uniformly sample the next experimental design rather than optimising the criterion.

For this case study, the new design criterion Dy performs similarly to the classical criteria:
Djgr has a higher average number of additional experiments (A) than Dy and Dgr, but
also a higher success rate (S). Compared to Daw, Djr has a lower average A. In all cases,
the difference between the criteria’s averages A is less than the sum of their standard errors

SE.

The random design selection U results are a sanity check: the success rate is significantly
lower while the inconclusive rate is higher. For the m; y model discrimination method,
random design selection succeeded in only 2 simulations. For the x? model discrimination
method, the average A is lower for the random design selection than for Dgr and Djg, due
to a low success rate: random design selection only succeeded for the easier simulations.
Making an informed decision for the next experimental design is obviously beneficial to

reduce the number of extra experiments needed for model discrimination.

4.4 Discussion

We have derived the novel design criterion Djg and discussed trade-offs between different
experimental designs. In our experiments, the different design criteria sometimes perform
similarly and (in those cases) the model discrimination method has a large impact on the
success rate or the number of additional experiments required. Another important consider-

ation is parameter estimation: We may accidentally discard the data-generating model due
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to poor parameter estimation.

Model indiscriminability is a major hurdle for model discrimination. Parametric models may
be very flexible, spanning a large part of the target space depending on the specific model
parameter values. Useful stopping criteria for design of experiments, e.g. Buzzi-Ferraris
and Forzatti’s (1983) criterion Dgp(u) > 1 mentioned in Section 3.2, are difficult to come
by. In practice, we may need to rethink the experimental set-up to reduce measurement
noise or add new system inputs or target dimensions. Another option is to analyse the
physical meaning of the model parameters with the goal of tightening the bounds on the
allowed model parameter values. A smaller model parameter space should reduce model
flexibility, i.e. the size of the target space spanned by the model. This may alleviate model

indiscriminability.

This chapter has addressed design criteria for sequential design of experiments, but engineers
and researchers may want to design several new experiments to run in parallel. This is
called batch optimisation in the Bayesian optimisation literature [Gonzalez et al., 2016].
Galvanin et al. [2006, 2007] and Bazil et al. [2012] have studied design of parallel experiments
for parameter estimation, but there have been fewer contributions on design of parallel
experiments for model discrimination. A simple heuristic is to design new experiments in a
sequential fashion while penalising new experiments in the vicinity of experiments already

added to the next batch.
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5 Design of Experiments for

Black-Box Model Discrimination

This chapter is based on Olofsson et al. [2018b], Olofsson et al. [2018a], and Sections 4, 5, 6
and 7 of Olofsson et al. [2019a].

We now consider designing experiments and discriminating between black-box models, i.e. mod-
els where we can observe the output given an input, but where gradient information is not
readily available. This gradient information is needed in the analytical approach to design
of experiments and model discrimination for approximating the model prediction covariance
(see Section 3.2). The data-driven approach in Section 3.3 makes fewer approximations and
does not rely on gradient information, but may be computationally prohibitive. Section 3.4

discusses this trade-off between accuracy and computational cost.

We wish to bridge the gap between the analytical approach and the data-driven approach.
We propose a hybridisation between the two: we sample the design and parameter spaces to
learn surrogate models that can be incorporated into existing analytical design and model
discrimination criteria. The surrogate model method presents a different trade-off between
accuracy and computational cost, where we may benefit from the results of the analytical

approach but also extend the analytical approach to cases of black-box models.

Surrogate models are common in applications where the original model does not easily
lend itself to optimisation, e.g. Palmer and Realff [2002], Caballero and Grossmann [2008],
Fahmi and Cremaschi [2012], Boukouvala et al. [2017], Beykal et al. [2018], Jones et al.



82 5. Design of Ezxperiments for Black-Box Model Discrimination

[2018], Carpio et al. [2018] and Yang et al. [2019]. Common surrogate models include e.g.
support vector machines [Cortes and Vapnik, 1995]. Our surrogate models are GPs, flexible
regression tools common in statistical machine learning [Rasmussen and Williams, 2006], e.g.
for Bayesian black-box optimisation [Shahriari et al., 2016; Ulmasov et al., 2016; Mehrian
et al., 2018; Olofsson et al., 2019b; Babutzka et al., 2019]. GPs provide model prediction
confidence bounds, and their analytical nature allows us to extend the classical analytical

methods to non-analytical models.

In addition to presenting the GP surrogate modelling method that will also be used in

Chapter 6, this chapter introduces the GPdoemd open-source software package.

5.1 Gaussian Process Surrogate Model

Let us begin by studying a single model f = f;, with parameters 8 = ;. The function f may
be a vector function, with predictions f(u, ) € RP» where D, > 2. Following Section 2.3.2,

we place independent GP priors on each output (or target dimension) d =1,..., D, of f:

fay ~ GP (0, kuy ) (-, ko, a) (- ")) - (5.1.1)

Training data is required for learning the GP hyperparameters and performing GP regres-

sion. The training data is acquired in the following way:

controls We assume the control space ¢/ is known and bounded. Training data control
values uy are sampled from U. The training data should reasonable cover regions of
U where optimal solutions to the experimental design problem may lie. The control
training data sampling can be done using different strategies. In the Section 5.3
experiments, the control space U is a known hyperrectangle and the training data
control values uy placed on a uniform grid. The density of the grid depends on the
dimensionality of &/ and how large training data set can be accommodated. Regular
GP regression normally scales to a few thousand training data points. Sparse GP

regression can scale to larger training data sets.

parameters Training data model parameter values 8, are sampled from 6, ~ N/ (9, el),
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for some small €, where 6 denotes the maximum a posteriori model parameter estimate.
The model parameters are optimised during parameter estimation and then remain
fixed when solving the experimental design problem. The training data explores a

small region around 6 such that we can approximate the gradients 9f/00.

inputs Let 2, = (uy, 6;) denote the combined training inputs. Let Z denote the set of

combined training data inputs, with [Z], = .

targets Training data targets f, are computed as f, = f(z¢). Let F denote the set of
training data targets, with [F], = f,, and let f(d> denote the vector of values for the

d™ output dimension of F.

The (artificial) GP training data should not be confused with the experimental data set D
that is used for parameter estimation and model discrimination. Similarly, the artificial GP
regression noise 7 ~ N(0, 02I) in Section 2.3.1 should not be confused with the experimental

1n

measurement noise v ~ N (0,X,) in Section 3.2.

The hyperparameters, e.g. signal variances p%d), length scales A4y and noise variance 05 (d)
are learnt by maximising the log-marginal likelihood 1ogp(}'(d) | p%d)7A(d), U%y(d)). As dis-
cussed in Section 2.5, since f is a deterministic function the noise variance hyperparameter

o2 (4 should be lower-bounded (e.g. o7 ;) > 1E-6) to avoid numerical issues.

The predictive distribution at a test location z = (u,0) is f(z) ~ N (u(2),X(z)) with

w(z) = [pay(2), -y ()]

(5.1.2)
% (2) = diag (o) (2), ., o8, (2)) |

where the mean and variance elements 1(q)(2) and U(Qd)(z) are given by the adapted Equa-

tion (2.3.2) expressions

1y (2) = kigy Ky + on. D) Fay

oty (2) = ka)(2,2) = k{g)(Ka) + o5 (D) " K(a) -

The vector k(g and matrix K have elements [kgy]e = kwy(2, 2¢) and [Kg)le, 0, =

k(a)(Ze,, 2¢,), respectively. Note that we use the simplified notation u(z) = p(u, @), and
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that the covariance function k4 for each target dimension is

k(d) (Z7 Zl) = ku,(d) (u7 ul)kﬂ,(d) (07 0/) s
as given in Equation (5.1.1).

The model parameter distribution p(@|D), where D is real experimental data, is approxi-
mated as Gaussian distributed, with mean 6 and covariance 9. The approximate model

parameter covariance Xy is computed using the first-order Laplace approximation

T
_1 Ou(u,0)
1 )
ZZU ’

- op(u, 0)
1 )
DD 90 s

00
ueD

0=0

as in Section 3.2, with the gradients Vg f replaced by the corresponding gradients Vgpu.

Using the Gaussian model parameter distribution p(@|D) and the first- and second-order
Taylor approximations described in Section 2.7, we can compute the approximate marginal

predictive distribution

p(f)| D)~ N (i), S(w)) - (5.1.3)

The first-order Taylor approximation yields the marginal mean and variance

S(u) =S5 (u,0) + VouSoVou'

where Vou = 0p(u,0)/90|,_5. The second-order Taylor approximation yields the marginal

mean ji(u) with elements

fiay (W) = pay(u, 0) + L tr (VaumSs)

and marginal covariance X (u)

v

Y(u) = diag(qq), - --»9n,)) + Q,
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fi(u,0;) / Design criterion

Experiment u

Figure 5.1: GP surrogates replace the original rival models f; and f> and are trained on
a small number of sampled designs and model parameter values (crosses and circles). The
GP surrogates are then used to compute analytical approximations of the marginal predic-
tive distributions. These marginal predictive distribution approximations can be used with
existing analytical design criteria. Compare to Figure 3.4 and Figure 3.6.

qa) = O’(Zd)(u, 0) + %tr (V%a(zd)Eg) ,
Q). (a2) = VeraZoVoria, + 5t (Vora) ZoVera) So)
for d,dl,dg = 1, .. .,Dy.

We make two observations:

e Unlike in Section 2.7, only a subset of the input dimensions are marginalised out;

it = ji(u) and X = %(u) are functions of the experimental design .

e Replacing the original model f with a GP surrogate model introduces added uncer-
tainty to the marginal predictive covariance f)(u) The marginal predictive covariance
of the GP surrogate model contains an extra term E[X¢(-)] of uncertainty, compared

to the marginal predictive covariance of the analytical models in Section 3.2.

Figure 5.1 shows an example of the marginal predictive distributions of two rival models
approximated using GP surrogate models. These marginal predictive distributions can be

used with existing analytical design criteria.
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When using the second-order Taylor approximation of the marginal predictive distribution,
it is still best to use the first-order Laplace approximation of the model parameter covari-
ance since a second-order approximation more easily results in a singular Fisher information
matrix 20_1. The first-order Laplace approximation yields a positive semi-definite 20_1 by
construction, but it can still be ill-conditioned. A singular Fisher information matrix in-
dicates non-identifiable model parameters, a common problem in mechanistic modelling.
As discussed in Section 3.2, a (near-)singular Fisher information matrix means the Laplace
approximation of the model parameter uncertainty is not useful, and an alternative approx-

imation for Xy is recommended.

The approximate marginalisation using first- or second-order Taylor approximations can also
be used for surrogate models with inducing input sparse GP regression (see Section 2.6).
The gradient expressions for using sparse GP regression with inducing inputs are directly

equivalent to the gradient expressions for the full GP model.

5.2 The GPdoemd Software Package

GPdoemd! is an open-source Python package implementing the GP surrogate method to
design of experiments presented in Section 5.1. This section describes the package. Addi-
tional documentation for installing and using GPdoemd is available in the form of a PDF
document and Jupyter notebook demonstrations in the GPdoemd GitHub repository. GP-
doemd uses functionality from the GPy [since 2012] Python package for GP training and
inference. Other dependencies are the standard numpy (v1.7-v1.15) and scipy (v0.17-v1.1)
packages. GPdoemd is tested for Python version 3.4, 3.5 and 3.6. There are several Python
interfaces to query models written in other languages, e.g. R or MATLAB. GPdoemd only

requires point sampling of the original models in order to construct the GP surrogates.

! Available online at: https://github.com/cog- imperial/GPdoemd
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Model dictionary — | 1. Model 3. GP kernels
Analytic RBF
Numerical Exponential
< +---
2. F’ara.m. GPModel Matern32
estimation SparseGPModel Matern52
diff_evol GPGriefModel Cosine
least_squares - 1 RatQuad
|
! |
I
4. Param. e
covariance \
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laplace_approximation 6. Design !
i criterion |
5. A - ¢ HR 7. Discrimination
- Approximate BH method
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» BF »| gaussian_posterior
first_order_taylor AW chi2
second_order_taylor JR akaike

Figure 5.2: The modular structure of the GPdoemd open-source software package.

5.2.1 Implementation

GPdoemd consists of several modules, illustrated in Figure 5.2, that offer a choice between
different GP kernel functions, inference methods, methods to approximate the marginal
predictive distributions, design criteria and model discrimination methods. The modules

can easily be extended and new functions implemented and added to the GPdoemd toolbox.

GPdoemd currently comes with the Table 5.1 case studies. Researchers may try the GP
surrogate method and compare the performance to competing methods for design of exper-
iments for model discrimination. The case study mixing was developed for GPdoemd and
considers different order micro- and macrofluid models. Section 5.3.3 describes the mixing

case study.

5.2.2 Syntax and Supported Features

Assuming the rival models f;(u, ;) have been proposed, GPdoemd assists in model discrim-

ination. Figure 5.2 illustrates the process.
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Name Reference Dy, Dy ; D, | M | f;
b£f£1983 Buzzi-Ferraris and Forzatti [1983] 3 5 1 5 | A
bffeh1984 Buzzi-Ferraris et al. [1984] 2 4 2 4 | A
bffc1990a Buzzi-Ferraris et al. [1990] 3 2-6 1 4 | A
mixing Olofsson et al. [2019a] 3, (1) 1 1 5 | A
msm2010 Michalik et al. [2010] 3 1 1 10 | A
vthr2014linear | Vanlier et al. [2014] 1 24 1 A
vthr2014ode Vanlier et al. [2014] 3,2 | 14 | 1 BB
tandogan2017 Tandogan et al. [2017] 4 8-14 2 BB

Table 5.1: GPdoemd case studies, with the number of design variables D, (number of
discrete variables in parenthesis), model parameters Dy ;, target dimensions Dy, rival models
M. The last column states whether the models are (A) analytical, i.e. function gradients
are provided, or (BB) black boxes, i.e. gradients are not provided.

Model type A model object is initialised using a Python dictionary containing the model
name (name), the model function f;(u,;) handle (call), the design variable and model
parameter dimensions D, and Dp; (dim_x and dim_p), the number of target dimensions
D, (num_outputs), model parameter bounds (p_bounds), experimental noise (co)variance 3,
(meas_noise_var), and a list of the dimensions for binary design variables (binary_variables).
Binary design variables are handled by creating separate GP surrogates for each binary
combination. This dictionary is passed to one of the implemented model types (Box 1
in Figure 5.2). GPdoemd uses the GPy implementation of sparse GP regression, with

variational learning of the inducing inputs [Titsias, 2009].

Parameter estimation Given experimental data Ydata for designs Xdata, GPdoemd helps
find the optimal model parameter values 8" using prediction error minimisation (Box 2 in
Figure 5.2): differential evolution (diff_evol) or least squares with finite difference gradient
approximation (least_squares). Both diff_evol and least_squares are wrappers for scipy

functions.

GP kernels The GP surrogate models require a choice of GP kernel functions k, and kg
for the GP prior GP(0, k. ko). GPdoemd currently supports 6 kernel functions (Box 3 in

Figure 5.2) from the GPy package, with minor extensions.
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Model parameter covariance GPdoemd assumes a Gaussian approximation N (6", 3y)
of the model parameter distribution. GPdoemd currently implements a Laplacian approxi-

mation of Xg.

Approximating marginal predictive distributions The hybrid approach approxi-
mates the marginal predictive distribution in with a Gaussian distribution. GPdoemd im-
plements the first- and second-order Taylor approximations (Box 5 of Figure 5.2) of the first

two moments of the models’ predictive distributions in Equation (5.1.3).

Design criterion GPdoemd provides five different criteria (Box 6 in Figure 5.2) for de-
signing the next experiment: HR [Hunter and Reiner, 1965], BH [Box and Hill, 1967|, BF [Buzzi-

Ferraris et al., 1990] and AW [Michalik et al., 2010] and IR [Olofsson et al., 2019a].

Discrimination criterion GPdoemd provides three different criteria (Box 7 in Figure 5.2)
for model discrimination: normalised Gaussian posteriors m; y [Box and Hill, 1967], x? test
[Buzzi-Ferraris and Forzatti, 1983], and the Akaike information criterion weights [Michalik
et al., 2010].

5.2.3 Example

Assume we have a list dlist of model dictionaries, experimental data Xdata, Ydata with
experimental noise variance measvar, and lists X, P and Y of surrogate model training data
(design, model parameters and predictions, respectively). We wish to select the optimal

next experiment from candidates Xnew.

N = Xnew.shape[0] # Number of test points
M = len( dlist ) # Number of rival models
E = Ydata.shape[1] # Number of target dimensions

mu, s2 = np.zeros(( N, M, E )), np.zeros(( N, M, E, E ))
for i,d in enumerate( dlist ):
# Initialise surrogate model

m = GPdoemd.models.GPModel (d)
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# Estimate model parameter values
opt_method = GPdoemd.param_estim.least_squares
m.param_estim(Xdata, Ydata, opt_method, m.p_bounds)
# Set—up surrogate model
RBF = GPdoemd.kernels.RBF
Z = np.c_[ X[i], P[i] ]
m.gp_surrogate(Z=Z, Y=Y[i], kern_x=RBF, kern_p=RBF)
m.gp_optimise ()
# Approximate model parameter covariance
m.Sigma = GPdoemd.param_covar.laplace_approximation( m, Xdata )
# Approximate marginal predictive distribution at test points
mul[:,i], s2[:,i] = GPdoemd.marginal.taylor_first_order( m, Xnew )
# Design criterion at test points
dc = GPdoemd.design_criteria.JR(mu, s2, measvar)
# Optimal next experiment

xnext = Xnew[ np.argmax(dc) ]

The newly designed experiment is executed, and xnext and the new observation added to
Xdata and Ydata, respectively. If model discrimination fails, the process above is repeated in

order to find the optimal next experiment.

5.3 Performance of Gaussian Process Surrogate Method

We next compare the GP surrogate approach in Section 5.1 of approximating the marginal
predictive distribution to the classical analytical approach in Section 3.2. We will show
that the GP surrogate method is not significantly worse at model discrimination than the
analytical method, since otherwise the GP surrogates would be ineffective for extending the
analytical method to black-box models. For notational convenience, we call the GP surro-
gate method with first- and second-order Taylor approximations of the marginal predictive
distribution GP-T1 and GP-T2, respectively. In each case study, training data is generated

from a grid in input space to ensure some level of space-filling.



91

We study the GP surrogate method using four case studies:
Case study 1: Ammonia synthesis [Buzzi-Ferraris et al., 1990]
Case study 2: Chemical kinetic models [Buzzi-Ferraris et al., 1984]
Case study 3: Mixzing [Olofsson et al., 2019a]
Case study 4: Biochemical networks [Vanlier et al., 2014; Olofsson et al., 2018a|

Case study 1 considers four different models for synthesis of ammonia (NHj3) from hydrogen
(H2) and nitrogen (Ng). There are D,, = 3 design variables, Dy ; € {2,4,6} parameters per
model, and D, = 1 observable output. Each simulation has Ny = 5 initial measurements
and a maximum budget of 40 new experiments. Section 4.3.2 further describes the case

study.

Case study 2, further described in Section 5.3.2; has four different chemical kinetic models.
There are D, = 2 design variables, Dy ; = 4 parameters per model, and D, = 2 observable
outputs. Each simulation has Ny = 5 initial measurements and a maximum budget of 40

additional experiments.

Case study 3 is new. It studies conversion of a reactant under mixing of a fluid. There are
D,, = 3 design variables (one of which is binary), Dy ; = 1 parameter per model, and D, = 1
observable output. Each simulation has Ny = 2 initial measurements and a maximum budget

of 20 additional experiments. Section 5.3.3 further describes the case study.

Case study 4 is a version of the Vanlier et al. [2014] biochemical networks case study,
with models consisting of systems of ordinary differential equations [Olofsson et al., 2018a].
There are D,, = 3 design variables, Dy ; = 10 parameters per model, and D, = 2 observable
outputs. Each simulation has Ny = 20 initial measurements and a maximum budget of 100

additional experiments. Section 5.3.5 further describes the case study.

5.3.1 Case Study 1: Ammonia Synthesis

First, we compare the GP surrogate method to the classical analytical method on the am-

monia synthesis case study [Buzzi-Ferraris et al., 1990]. Case study 1 is further described in
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MD Ti,N X3 Wi
DC Dgn  Djr U Dpgr  Djr U | Daw Djr U
A 20.85 22.24 34.50 | 20.56 21.12 14.50 | 7.11 6.61 21.25
SE 0.82 0.72 1.77 1.43 1.22 3.02 0.47 0.49 1.08
S [%] 81 87 2 81 84 10 100 100 73
F [%)] 0 0 0 1 1 1 0 0 2
I[%] 19 13 98 18 15 89 0 0 25
(a) Analytic method results from Table 4.2.
MD TN X? w;
DC Dgn Djr | Der Djr | Daw  Dir
A 19.72  21.73 | 17.28 17.55 | 6.73 6.53
SE 0.68 0.70 1.30 1.12 0.39 0.41
S/ | 8 84 | 79 82 | 100 100
FI% || 0 0 1 2 0 0
1% || 4 16| 20 16| 0 o0
(b) GP-T1 (first-order Taylor)
MD TN X w;
DC || Dgau Dyjr | Der Djr | Daw  Djr
A 6.31 6.13 | 17.29 13.64 | 3.03 2.94
SE 0.21 0.24 1.55 1.73 0.14 0.12
S (%] 96 95 63 22 100 99
F% || o 0 2 0 1
1% 3 6 | 0 0

(¢) GP-T2 (second-order Taylor)

Table 5.2: Performance statistics of GP surrogate method with (b) first- (GP-T1) and (c)
second-order (GP-T2) Taylor approximation of the marginal predictive distribution for case
study 1 (ammonia synthesis). Compare to statistics for analytical method in Table 4.2,
reproduced here in (a) for the reader’s convenience.

Section 4.3.2. Table 5.2 shows the performance statistics of GP-T1 and GP-T2 from sim-

ulations from 100 sets of random initial measurements. Table 5.2 also shows the Table 4.2

performance statistics of the analytic method for comparison.

Table 5.2b shows that GP-T1 performs similarly to the analytical method. The averages

A are similar, taking the sometimes relatively large standard errors SE into account. In

Table 5.2c, GP-T2 largely produces better simulation statistics than both the analytical
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method and GP-T1. GP-T2 appears to produce marginal predictive distributions more
beneficial for model discrimination in this case study. It may be that the second-order
characteristics of GP-T2 improve the marginal predictive distribution accuracy. It may also
be that the models’ structure (all model parameters appear in exponents in the denominator)
advantage models with the fewest model parameters (f; and f2). In this case study, we

generate data from model f;.

5.3.2 Case Study 2: Chemical Kinetic Models

This case study looks at four chemical kinetic models [Buzzi-Ferraris et al., 1984]. There
are two observable outputs y1, y2 and two design variables uq,us € [5,55]. Each chemical

kinetic model ¢ has four model parameters 6; ; € [0,1]. The model functions are given by:

Model 1:  f1 ) =611wmuz/g1, fi,2) = O12u1u2/01,
Model 21 fo 1) = O21u1ta/g5,  fo,(2) = O 2urua/h3
Model 3:  f3 1) = 03 1u1u/h3 1 , f3,(2) = O32u1uz/h3 5,

Model 4:  f4 1) = Os1uru2/gs, fa2) = Oa2uruz/ha,

where g; = 14 6; 3u1 +6; 4u2 and h; j = 14 6; 21 ju;. We follow [Buzzi-Ferraris et al., 1984]
by generating experimental data from model 1 with 6, ; = 6;3 = 0.1 and 6; 5 =0, 4 = 0.01
and experimental noise covariance ¥, = diag(0.35, 2.3E-3). We start each test with 5
randomly sampled experimental observations, and set a maximum budget of 40 additional

experiments.

Table 5.3 shows the case study 2 (chemical kinetic models) performance statistics of GP-
T1, GP-T2 and the analytical method from simulations from 500 sets of random initial
measurements. In this table, GP-T1 and GP-T2 perform similarly. For the m; y and w;
model discrimination methods, the GP surrogate method has higher averages A than the
analytical method, but also higher success rates and lower failure rate. For the x? model
discrimination method, the situation reverses, though the difference in average A is smaller

and for GP-T1 the failure rate is still lower.
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Analytical GP-T1 GP-T2

MD || mn X} wi TN XE wi TN XE wi
DC || Den Der Daw | Den Der Daw | Den  Der  Daw
A 2.60 287 2.08 | 431 223 272 4.14 229 2.64
SE 0.04 0.12 0.04 | 0.09 0.06 0.08 | 0.09 0.07 0.06

S [%] 86.4 64.2 624 | 956 474 88.6 | 96.9 46.6 90.1

F [%] 13.6 5.0 37.6 4.4 4.8 114 3.1 9.9 9.9

I[%)] 0.0 30.8 0.0 0.0 47.8 0.0 0.0 43.5 0.0

Table 5.3: Performance comparison between the GP surrogate method with first- (GP-T1)
and second-order (GP-T2) Taylor approximation of the marginal predictive distribution,
and the analytical methods, for case study 2 (chemical kinetic models).

Order R Mixing PFR CSTR.
oth Bur Jus Micro fi=fo=1-R fi=1-R(fi=0if R>1)
Macro | (fi=fo=0if R>1) | fo=1— R+ Rexp(—1/R)
1st Ouy Micro f3 = exp(—R) fs=1/1+R)
Macro
i — L (_
2nd Ourug Micro fi=fs=1/1+R) fi= g5 (-1+VI+4R)
Macro f5 = % exp(1/R) Ei(1/R)

Table 5.4: Conversion rate models for a reaction in a micro- or macrofluid during mixing in
an ideal PFR or CSTR reactor [Levenspiel, 1999, p. 356]

Overall, Table 5.3 indicates that the GP surrogate method is more conservative than the
classical analytical method. This conservatism may arise from the added surrogate uncer-
tainty term Xy in Equation (5.1.2) yielding a larger predicted variance for the surrogate

than the original model.

5.3.3 Case Study 3: Mixing

This case study considers a single fluid containing a reactant mixing during reaction. We
wish to learn (i) whether it is a zero-, first- or second-order reaction, and (ii) whether
mixing occurs on the microscopic or macroscopic level [Levenspiel, 1999, ch. 16]. We can
run experiments in a plug flow reactor (PFR) or continuous stirred-tank reactor (CSTR)
and observe the reactant conversion rate. We assume ideal reactors. The rival models f; are

given in Table 5.4, where Ei(z) = [ t~' exp(—t)dt is the exponential integral.

The design variables are the residence time w; € [1,100], the initial concentration us €
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01 02 03 04 05
6E-3 6E-3 0.015 0.025 0.025

Table 5.5: Recommended model parameter values for the data-generating model in case
study 3 (mixing). Case study 3.1 generates data from model f5 with true parameter value
03, and Case study 3.2 generates data from model f; with true parameter value 5.

[0.01,1] and the reactor type us € {PFR, CSTR}. The model parameter is the reaction rate
0; € [1E-6, 0.1].

Note that the expression for the conversion rate in the ideal PFR reactor is the same for
micro- and macrofluids. This is also true for the CSTR reactor 15°-order reaction expression.
All expression are differentiable with respect to the model parameter, with the exception of

the f; and fo at R = 1.

Experimental data can be generated from any of the models; Proposed model parameter
values for the data-generating model can be found in Table 5.5. For the experimental evalu-

ation in this paper, we generate data from model f3 and f5 with experimental noise variance

2:

Ty

2.58-3. Generating data from model f5 produces a significantly more difficult problem
of model discrimination, since models f; and f5 yield predictions difficult to differentiate.
Let case study 3.1 and 3.2 refer to case study 3 with data generated from model f3 and fs,

respectively.

Table 5.6 shows the performance statistics for GP-T1, GP-T2 and the analytical method
from simulations from 100 sets of random initial measurements for case study 3.1, with
experimental data generated from model f3. This case study has a high success rate and
low number of additional experiments required for all discrimination criteria and methods

of model discrimination.

Table 5.7 shows the performance statistics for GP-T1, GP-T2 and the analytical method
from simulating 100 sets of random initial measurements for case study 3.2, with experi-
mental data generated from model f5. Case study 3.2 is more difficult than case study 3.1,
so we increase the maximum number of additional experiments to 100. Table 5.7 shows that
GP-T1 and the analytical method perform similarly. GP-T2 performs poorly for this case

study: the failure rates for the m; y and w; methods of model discrimination are often com-
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MD TN X Wi
DC Dgn Djyr | Der Djr | Daw  Dir
A 442 4.25 | 2.09 1.30 247 238
SE 0.09 0.07 | 0.04 0.05 | 0.06 0.09
S [%] 100 100 100 100 100 100
FlZll o o | o o] o o
1% | o o | o o | 0o o0

(a) Analytical

MD TN X? wj
DC Dgn Djr | Der Dir | Daw  Dir
A 465 4.48 | 1.78 1.24 | 2.61 2.19
SE 0.16 0.13 | 0.08 0.09 | 0.06 0.09
S [%] 99 100 99 100 100 100
FI% | o o] o o | o o
1% | t o | 1 o] 0o o

(b) GP-T1 (first-order Taylor)

MD Ti,N X7 wj
DC || Dgg Djr | Dsr Dir | Daw Dir
A 5.75 4.45 | 1.21 1.15 227 230
SE 0.16 0.23 | 0.06 0.11 | 0.05 0.10
S [%] 99 95 100 100 100 100
FI% || o o] o o] 0o o0

I[%] 1 5 0 0 0 0
(c) GP-T2 (second-order Taylor)

Table 5.6: Performance comparison between the GP surrogate method with first- (GP-T1)
and second-order (GP-T2) Taylor approximation of the marginal predictive distribution,
and the analytical methods, for case study 3.1 (mixing). Noisy observed data is generated
from model fs.

parable to the corresponding success rates. The averages A are higher and the success rates
lower for case study 3.2 than for case study 3.1. This is due to indiscriminability between

models fs and f5 (further discussed in Section 5.3.5).
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MD TN X7 wi
DC Dgn  Djr | Der Djr | Daw  Dir
A 54.71 50.79 | 50.97 45.00 | 26.07 27.70
SE 2.25 2.08 4.88 3.96 1.56 1.68
S| || 75 72 | 34 49 | &8 o7
F [%] 0 0 0 1 2
1% | 25 28 | 66 50 1
(a) Analytical
MD i, N X7 wi
DC Dgn  Djr | Dsr Djr | Daw  Dir
A 53.13 50.88 | 49.03 44.23 | 26.91 28.05
SE 1.95 1.96 4.84 4.23 1.52 1.79
S[% || 71 74 | 33 43 | 100 o8
F% || o 0 2 1 0 2
1% | 29 26 | 65 56 0 0
(b) GP-T1 (first-order Taylor)
MD T, N Xf wj
DC Dgu  Dyr | Der  Djr | Daw  Djr
A 75.69 83.05 | 60.70 52.86 | 12.32 22.96
SE 5.82 2.25 4.13 11.89 | 0.82 2.65
S[% | 16 39 | 33 59 45
Fla || 17 2 0 3 | 4 55
1% || 67 59 | 67 90 | o 0

(c) GP-T2 (second-order Taylor)

Table 5.7: Performance comparison between the GP surrogate method with first- (GP-T1)
and second-order (GP-T2) Taylor approximation of the marginal predictive distribution,
and the analytical methods, for case study 3.2 (mixing). Noisy observed data is generated

from model fs.

5.3.4 Joint Comparison

The Table 5.2 results for case study 1 were generated with 3 combinations of design criteria

and model discrimination methods (excluding random design). The Table 5.3 results for

case study 2 were generated for 6 combinations. The Table 5.6 and Table 5.7 results for

case study 3.1 and 3.2, respectively, were generated for 6 combinations each. Hence there

are j = 1,...,21 combinations of case studies, design criteria and model discrimination
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methods. In each case study, ¢ =1,...,100 random initial data sets were generated. Thus,
a total of 2100 simulations were run for each of GP-T1, GP-T2 and the analytical method.
Section 4.3.1 defines a;, as the number of additional experiments needed for successful
model discrimination in combination j with initial data set ¢ (using GP-T1, GP-T2 or the
analytical method). Figure 5.3 shows the GP-T1 distribution of a; , for all combinations of
case studies, model discrimination methods and design criteria. The figure illustrates the
variance in the results, possibly due to the independent noise realisations in the different
simulations, but that the spread of analytical and GP-T1 results tends to be symmetric
around the central line. Figure 5.4 shows the a;, distribution for GP-T2. In this figure

some a;, distributions are not symmetric around the central line.
The average A and standard error SE in Table 4.1 are defined for combination j as
Aj =mean{a;}e,

1

V2l

Figure 5.5 shows the outcomes of all case study simulations and compares the averages

SE, =

. Std{d]‘,g}g .

with standard errors for GP-T1, GP-T2 and the analytical method. GP-T1 performs very
similarly to the analytic method on average. The similar average performance indicates
that GP-T1 successfully emulates the analytical method, which also uses a first-order Taylor
approximation. GP-T2 apparently performs better on average than the analytical method
(in terms of average number of additional experiments required in successful simulations) for
case study 1, but the analytical method possibly performs better for case study 2 and 3.2.
In most case studies, GP-T2 performs as well as—or better than—GP-T1. For case studies
where the GP surrogate model makes accurate predictions, a second-order approximation of
the marginal predictive distributions may be more accurate than a first-order approximation.

However, for case study 3.2, with data generated from model f5, GP-T2 performed worse.

5.3.5 Case Study 4: Biochemical Networks

This case study is an adapted version of a Vanlier et al. [2014] case study. There are nine

chemical components with concentrations C;, i = 1,...,9. The concentrations are given by
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Figure 5.3: Comparison of the number of additional experiments a;, needed for success-
ful model discrimination using the analytical method or GP-T1. Each subplot shows the
outcomes of all simulation with successful model discrimination for both the analytical and
GP-T1, 1828 simulations in total, for a given case study, method of model discrimination
and design criterion. Note that case study 2 does not compare the performance of Dyg to
the other design criteria.
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Figure 5.4: Comparison of the number of additional experiments a;, needed for success-
ful model discrimination using the analytical method or GP-T2. Each subplot shows the
outcomes of all simulation with successful model discrimination for both the analytical and
GP-T2, 1615 simulations in total, for a given case study, method of model discrimination
and design criterion. Note that case study 2 does not compare the performance of Dyg to
the other design criteria.
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Figure 5.5: Comparison of the average number additional experiments A (with standard
error SE) needed for successful model discrimination using the analytical method or (top
row) GP-T1 or (bottom row) GP-T1. The average A decides the centre of each marker,
and the length along each axis is the SE (with a minimum value enforced to make the
markers visible). Each subplot shows the average number of additional experiments for
both the analytical and GP-T1 or GP-T1, for each case study and a specified method of
model discrimination and design criterion. Note that one case study does not compare the
performance of Djr to the other design criteria, so there are three Djr averages and four
averages for other design criteria. We note that on average, GP-T1 performs very similarly
to the analytical method, whereas GP-T2’s comparative performance varies more.

the solution to the system of ordinary differential equations

dCy/dt = 6, 2C5 — g1,

dCy/dt = g1 — 0;2C5,

dCs/dt = 6; 4Cy — g2,

dCy/dt = go — 0;4C4 — 0;5C1Cs + 0, 6Cr,
dCs/dt = 0; 4Cs — 0, 10C5,

dCs/dt = 0;6C7 — 0; 5C4C + 0;,10Cs — 0; 4Cs
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dC7/dt = 6; 5C4Cs — 0; 6C7 ,
dCg/dt = 6;8Cy — 6; 7Cs ,

dCy/dt = 0, 7Cs — 0, 3Cy,

i.e. the stoichiometry is the same for all models. But the fluxes g; and g, differ for the

different models. For flux g; the models differ in the following way:

Model i € {1,3,4} : g1 =6,.C1,

02,1C1
Model 2 : =
ode g 9279 + Cy
For flux go the models differ in the following way:
01,3C2C3
Model 1 : ==
ode g2 91,9 + Cy

Model 2: gy = 05 3C5C},

03,3C2C3

Model 3: g, = 332253
ode 92 03,9 + Co
04,3C>C3

Model 4 : === -
ede 92 049 + Cg

We assume that the only measured states are the concentrations Cy and Cy, because these
are the states from which Vanlier et al. [2014] collect their initial data. Similarly, we use
the initial concentrations Cy(¢t = 0) and Cy(t = 0) as two of our design variables, the third

design variable being the time point ¢ at which to measure the concentrations.

Vanlier et al. [2014] look at times points in the range ¢ € [0,20], which we also adopt.
We assume the initial concentrations Cy(t = 0),Co(t = 0) € [0,1] and fix all other initial

concentrations to

Ci(t=0)=C3(t =0) = Cs(t =0) = Cs(t =0) =1,

Ca(t=0) = Co(t = 0) = Cy(t =0) = 0.1.

We assume the model parameter space 8 € [0,1]!°. Simulations show that sampling from
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4 models 3 models

MD | mn X} w; Q X7 w;
DC | Dgg Dpr Daw | Deu  Dpr Daw
A 20.10 39.83 29.62 | 15.80 21.91 9.74
SE 3.72 12.09 7.72 2.05 2.52 1.70

S [%] 15.9 9.5 33.3 89.5 77.2 95.6

Fl% | 79 00 79 | 61 09 18

1[%] | 762 905 587 | 44 219 26

Table 5.8: Results from case study 4 (biochemical networks). With four models, we en-
counter model indiscriminability: Two of the models make predictions too similar to suc-
cessfully discriminate between them in a majority of simulations. Experimental data is
generated from one of the two models. If we remove the other model, we find that we are
able to successfully perform model discrimination.

this parameter space gives a wide range of model realisations.

With reference to models 1 and 2 being similar, we see that the only difference between
them is that the term 0; 9 + C7 divides g; and g3 for models 1 and 2, respectively. If C7 is

small compared to 6; 9, then the models are nearly identical.

We wish to verify that the GP surrogate method successfully extends the classical, analyt-
ical method for design of experiment for model discrimination to situations with black-box
models. The Table 5.8 results for 4 models show that the the success rates are significantly
lower for this case study than for previous case studies. For the m; xy model discrimination
method, the success rate is only twice as high as the failure rate. Rates of inconclusive
results are high, despite allowing 100 additional experiments with averages A all below 50.
The reason is that, in this case study, the prediction difference between models f; and f; is

often smaller than the experimental noise.

For a simulation, we can examine the evolving model discrimination criterion (m; n, x? or
w;) while adding measurements. For example, Figure 5.6 shows the evolution of the Akaike
weights w; for all simulations.  Figure 5.6a suggests that models f; and fo cannot be
discriminated in many simulations. To verify this, we remove model fy from the set of rival
models. Table 5.8 (3 models) and Figure 5.6b show that removing model fs enables correct

identification of model f; as the data-generating model in most simulations.
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(a) Four models
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Figure 5.6: Results from case study 4 (biochemical networks) with (a) four rival models and
(b) three rival models. The first four plots from the top show the evolution of the Akaike
weights w; for all simulations. The plots on the bottom row show the averages (with one
standard deviation). The plots in column (a) and statistics in Table 5.8 indicate that model
f1 and fy are almost indiscriminable. When we remove model f> from the set of models,
as in column (b), the GP surrogate method successfully finds that f; is the data-generating

model.
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5.4 Discussion

The Section 5.3 experiments are not in every way representative of model discrimination in
a real setting. The large-scale tests of the Dyr design criterion and GP surrogate method re-
quire fixed thresholds for when model discrimination (using m; v, X7 or w;) rejects or selects
a model. Our experiments set the “winning” threshold for m; xy and w; to 99.9%, which is
arguably high. But a high threshold also decreases the failure risk. In practice, an engineer
may select a model maintaining a probability score, e.g. of w; = 0.98 over multiple exper-
iments. Regardless of the precise threshold value, the results in Section 5.3 illustrate the
different discrimination methods’ relative performance. As described in Section 3.4, using
the x? test is significantly less likely to result in selecting the incorrect model. Typically,
this results in a higher number of required experiments to confidently discard inaccurate
models. In our results we do not see a higher average number of additional required experi-
ments. However, this average is only computed for successful simulations, where the correct
model was identified. We see that the rate of inconclusive experiments is higher for the
x? test method than when using the normalised model likelihoods m;,n or Akaike weights
w;. For some case studies the failure rate is unacceptably high when using the m; 5 or w;
discrimination criteria, but significantly lower when using the x? test. These are some of

the reasons why the x? test is the most widely used discrimination criterion in practice.

The results comparing GP-T1 (first-order approximation) and GP-T2 (second-order approx-
imation) paint a mixed picture. In case study GP-T2 arguably performs significantly better
than GP-T1 and the analytical method (using the m; v and w; tests for model discrimi-
nation). In case study 1 the data-generating model has 2 model parameters, compared to
2, 4 and 6 parameters, respectively, for the three rival models. It is possible the result
would have been different if data had been generated from the models with 4 or 6 model
parameters, since this makes accurate approximations of the model prediction covariance
more difficult. It is interesting to note that GP-T2 does not perform better than GP-T1 and
the analytical method (in terms of average A and success rate S) when the x? test is used
for model discrimination. This indicates that the GP-T2 predictive distributions are not

necessarily more accurate than the GP-T1 predictive distributions. For case study 3.2, the
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GP-T2 failure rate is also much higher than the GP-T1 failure rate. We would recommend
using GP-T1 for designing experiments as GP-T1 has results that are more consistently in
line with the baseline results of the analytical method. Chapter 6 will consider a first-order

approximation for design of dynamic experiments.
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6 Design of Dynamic Experiments

for Model Discrimination

Chapter 5 considered static models y = f(u, 8)+wv, i.e. models that do not explicitly depend
on time. Static models are sufficient, e.g. for experiments where (i) the design variable w only
controls the initial conditions of an experiment and (ii) a single set of measurements y are
taken. Static models are relevant, e.g. in very quick chemical reactions, where the time from
beginning to end of an experiment is too short to take intermediate measurements. However,
many industrially relevant processes are slow-moving and dynamic: the control signals can
be varied during an experiment, and measurements taken (almost) continuously during an
experiment. Examples include growing organisms and fermentation processes. Dynamic

(explicitly time-dependent) models best describe such processes [Bar-Joseph et al., 2012].

This chapter considers state space formulations of dynamic models. The state space formu-
lation stems from the fact that many dynamic processes are most easily expressed mathe-
matically using differential or difference equations. Dynamic models introduce some added
complexity to the design of experiments, in particular for the case of dynamic black-box

models. This chapter builds and expands on the Chapter 5 methodology to address this.

Assume the system at time 7 is in a state z(7) € RP=. The rate of change to the system’s
latent state is a function of the current latent state z(7), a control input u(7) € RP+, and
some process noise w(7). In general, we cannot observe all dimensions of the state x(7),
hence z(7) is referred to as a latent state. Let z(7) € RP= denote the observed state. We

take measurements y, € RP= of the observed states z(7) at discrete time-points 7¢ € Tmeas.
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Measurement noise v; corrupts the measurements of the observed states.

The state space model M describes the dynamic system’s behaviour

—ax(7) = f(z(r),u(r),0) +w(r),
M: z2(1) =Hax(r), (6.0.1)

Y, :Z(Tt)‘i"vta Tt € Tmeasv

where f is called the transition function and parameterised by 6, and the observed state z(7)
is a subset (or linear combination) Hz(7) of the latent state. Rival models My,..., My,
may have different dimensionality D, ; of the latent state x(7), but the dimensionality D,

of the observed state z(7) and measurements y, is the same for all models.

The model in Equation (6.0.1) is an example of a continuous-time model, where the latent
state x(7) is the solution to a system of ordinary differential equations. However, we may
choose to express the change in latent state as discrete transitions between time steps. Let
T = {tA7}L_, denote a set of equidistant time points, and let x; and z, denote the latent
state and observed state at time step ¢, respectively. Piece-wise constant control inputs wu;

form the control signal. We can write a discrete-time model as

Ty = f(B—1,ut—1,0) + w1,
M : zZy = :[—I;I;t7 (602)
Yy =2t + 0.

Another form of discrete-time model, which follows from an Euler discretisation of the

continuous-time model, is the discrete-time model with a A-transition

xy = @1+ f(Lio1,u—1,0) + w1,
M : zZi = Hajt7 (603)
Yy = 2t + Uy,

where the latent state at time step ¢ is given by a perturbation to the latent state at time

step t — 1. Note that the transition functions f are different for the continuous-time model,
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Input Output
Mapping dimensionality dimensionality
Static case xo, wo.r—1,0 — z1.7 | Dy + Dy X T 4+ Dy D, xT
Dynamic case T, U, 0 — i Dy + Dy, + Dy D,

Table 6.1: Comparison of the input and output dimensionality of the function f mapping
in the static case (Chapter 5) and dynamic case (this chapter).

discrete-time model, and discrete-time model with A-transition.

Let xg.7, z1.7 and ug.7_1 denote the sequences of latent states, observed states and control
inputs, respectively, in the discrete-time models. The initial latent state @y and control
inputs ug.7_1 are controlled by the user, and may be optimised. In order to make optimi-
sation feasible for systems described by continuous-time models, it is common practice to
discretise the control signal u(7) and let it be piece-wise constant (e.g. Espie and Macchietto
[1989] and Asprey and Macchietto [2000]). Hence, the inputs to the system models have
total dimensionality D, + D, x T + Dy, for both discrete- and continuous-time models,
and the outputs (measurements) have dimensionality D, x T. Hence the input and output
dimensionality are equivalent for discrete- and continuous-time models. It is clear that dy-
namic experiment design problems typically have high-dimensional input and output spaces.
However, the state space model formulation in this chapter reduces the input-output dimen-
sionality of the function f, compared to the equivalent input-output dimensionality of the
equivalent static formulation in Chapter 5 (see Table 6.1). But this mapping is carried out

T times in the dynamic case, instead of once for the static case.
Figure 6.1 shows an example with three rival models M;, M3 and M3 from Bania [2019].
The models are linear continuous-time models of the form

%95(7') = A;z(7) + Bu(r) + Cw(r),
M : 2(7)=[1,0,...,0]z(7), (6.0.4)

Yy = 2(T¢) + v,

with the matrices A;, B; and C; defined by [Bania, 2019]

./Vll . A1 = *1, B1 = 1, Cl = 1, (605&)
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6. Design of Dynamic Experiments for Model Discrimination
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Figure 6.1: Example from Bania [2019], with three models M;, My and M3 defined in

Equation (6.0.4) and Equation (6.0.5).

(a), (c) and (e) show three different piece-wise

constant control input as function of time 7, and (b), (d) and (e) show the corresponding
observed state z(7), plotted with two standard deviations of measurement noise.

0 1

MQ : A.2 =
-3 =25
[0 1
Mz: Az=|-3 -35
Lo o

—10

0
. Cy= , (6.0.5b)
1
0 0
=10, C=]o0 (6.0.5¢)
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Figure 6.2: Example from Bania [2019], with three models M;, Ms and M3 defined in
Equation (6.0.4) and Equation (6.0.5). (a) shows an optimised piece-wise constant control
input, and (b) the corresponding observed state z(7).

The initial latent state is a:[()i) =[0,...,0]", and the process noise w(7) and the measure-

ment noise v; are both Gaussian distributed with variances 02 = o7 = 2.58-3. Let the
piece-wise constant control inputs w, lie in the range [—1, 1]. In Figure 6.1 there are three
different piece-wise constant control signals: (a) a step input, (c) a scaled sinusoid input,
and (e) uniformly distributed random inputs. The models M1, M5 and M3 are all different,,
and yield different interpretations of mechanisms in the underlying system. Despite this,
as shown in Figure 6.1, it is non-trivial to find control inputs that yield different enough

model predictions to allow for model discrimination under reasonable levels of process and

measurement noise.

Naively applying a step or random control input is not guaranteed to produce data that will
help us solve the model discrimination problem. A naive control input may also result in
violations of system safety constraints. Figure 6.2 shows an example of a different control
signal, optimised to yield sufficiently large differences in the model predictions that it may
allow us to discriminate between the models. Often, more than one experiment is required
to discriminate between models. This chapter is concerned with finding optimal control
inputs (and other experimental conditions) to aid us with discrimination of dynamic models

under uncertainty and subject to constraints.
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6.1 Existing Work

Extensions of the methods in Section 3.2 exist for design of dynamic experiments. Espie
and Macchietto [1989] and Asprey and Macchietto [2000] consider discrimination between
multiple analytical continuous-time models and formulate an optimal control problem. Both
works consider the Hunter and Reiner [1965] criterion, i.e. the Mahalanobis distance between
model predictions, for design of experiments. Espie and Macchietto [1989] compare the re-
sults of using an optimal constant control inputs versus an optimal dynamic control input.
Asprey and Macchietto [2000] discuss accounting for model parameter uncertainty by taking
the expected value over the design criterion, or by considering worst-case parameter reali-
sations. Chen and Asprey [2003] also consider continuous-time models and use a Laplace
approximation for the model parameter covariance and linear propagation of the Gaussian

model parameter uncertainty to approximate the marginal predictive distributions.

Skanda and Lebiedz [2010] assume Gaussian measurement noise to derive an expression
for the Kullback-Leibler (KL) divergence between the predictive distributions of two rival
models (with the same number of states). They include the measurement time points Tpeas
as variables in the optimisation problem, together with the initial state z(0) = x¢ and
control inputs ug.r—1. The control inputs Skanda and Lebiedz [2010] consider are additive
perturbations to the state, and they assume the states cannot be measured and perturbed
in the same time step. Skanda and Lebiedz [2013] extend the setup of Skanda and Lebiedz
[2010] by considering model parameter uncertainty. They propose a robust optimisation

formulation
: : i i E KL 0, 0.
agg;:rx Ue?lnnM} inTéH@li [p(y,|0:) | p(y, | 6;)]

ToEX i#] ;€0 1€Tmeas
wo:T—1 €U

subject to constraints, with model parameter spaces ®; and ©, and p(y, | 8;) denoting the

predictive distribution at time step ¢ given model ¢ with parameter values ;.

None of Espie and Macchietto [1989], Asprey and Macchietto [2000], Chen and Asprey [2003],

or Skanda and Lebiedz [2010, 2013| consider process noise or uncertainty in the initial state
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2(0) = x¢ or control signal u(7). Nor do any of them, when solving the optimisation problem
subject to path constraints on the observed states zi.r, account for the uncertainty in the

observed states zi.7 predictions.

Cheong and Manchester [2014a] consider non-parametric linear discrete-time systems with
process noise (but no separate measurement noise) and uncertainty in the initial states
xo. For optimising the control signal they consider design criteria based on the pairwise
difference in models’ score in the x2? goodness-of-fit test. Cheong and Manchester [2014b]
extend this approach by deriving a model discrimination control law for model predictive
control. Though Cheong and Manchester [2014a,b] consider path constraints in the observed

states z1.7, they do not account for the uncertainty in the observed states zi.p predictions.

Streif et al. [2014] and Mesbah et al. [2014a] look at cases of two rival non-linear models M,

and My with multiplicative measurement noise

d
72(7) = fula(r),u(r), 0:)
M : 2(7) = gi(x(7),u(r),6;)

Yy, = diag(1 + wy)z

where f; and ¢;, i € {1,2}, are polynomial functions. They consider uncertainty in the
initial states and model parameters using polynomial chaos expansions, from which they
compute higher moments of the predictive distributions—“a computationally formidable
task” according to Streif et al. [2014]. They discretise the control signal and solve the design
problem by minimising the norm of the control signal such that the divergence between the
predictive distributions is greater than or equal to some threshold value. The divergence
can be computed using the predictive distributions’ higher moments [Streif et al., 2014] or

through Markov Chain Monte Carlo integration [Mesbah et al., 2014a].

Keesman and Walter [2014] look at continuous-time models of the kind {Ly(7) = f(y(1)) +
bu(r). They define the Hamiltonian and from this derive an optimal control law in closed
form for two rival models. This requires gradient information of at least the first order.

They do not account for parametric uncertainty, process noise or measurement noise.

Bania [2019] consider non-parametric linear discrete-time models with process and measure-
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Ref, (@) | 0 | (©) | (@] () [ )
Non-linear f 4 v v V)|V
Discrete-time models v v v
Continuous-time models | v v v v
Black-box models v
Measurement noise v v V)|V oV
Process noise v v v
Uncertain xq v v v
Uncertain u; v
Uncertain 6 v o (V) v 4
Optimise xq v v v
Optimise wg.7_1 v v v v v v
Optimise Theas v v v
Path constraints )| V)| V) 4

Table 6.2: References: (a) Chen and Asprey [2003], (b) Skanda and Lebiedz [2013],
(c) Cheong and Manchester [2014a,b], (d) Streif et al. [2014], (e) Bania [2019], (f) This
work. Bracketed check marks: Bania [2019] discuss how their approach can be extended
to non-linear transition functions f; Cheong and Manchester [2014a,b] has one noise signal
that affects both latent states and measurements; Skanda and Lebiedz [2013] use a robust
problem formulation instead of marginalising out the model parameters; Chen and Asprey
[2003], Skanda and Lebiedz [2013] and Cheong and Manchester [2014a,b] solve the design of
experiments optimisation problem subject to path constraints that do not account for the
uncertainty in the predicted states.

ment noise. By looking at the mutual information between choice of model and observed
output, they derive an optimisation formulation based on minimising the probability of se-

lecting the wrong model. They mention how to extend their approach to non-linear models.

Table 6.2 summarises the different approaches in literature in columns (a)—(e). Column (f)
shows the novelty of the approach proposed in this chapter compared to existing literature,
e.g. accounting for more possible types of uncertainty as well as accommodating black-box
models. As described in Section 3.2.3, many industrially relevant models may effectively
be black boxes, i.e. non-analytical in the sense that gradients of the function f are not
readily available. This may be due to legacy code, switches (if/else statements) or mod-
els that require solving an optimisation problem (e.g. minimising the Gibbs free energy).
Accommodating black-box models lets us be agnostic with regards to the model software

implementation, which is desirable since it flexibly (i) allows faster model prototyping and
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development, and (ii) satisfies the personal preferences of researchers and engineers.

To the best extent of our knowledge, there is no existing work using a data-driven approach
to tackle design of dynamic experiments for model discrimination. As mentioned, the di-
mensionality of the input and output spaces for the rival models can grow large when we
discretise in time. The computational cost associated with solving design of dynamic ex-
periments problems using the data-driven approaches in Section 3.3 would likely become
insurmountable. Likewise, naively applying the Chapter 5 approach is infeasible, since it
would operate directly on the mapping from (xg, %o.7—1, Tmeas) t0 z1.7; both the input
and output dimensionality would grow linearly with the number of time steps. The dimen-
sionality of the input space would be too high to perform accurate GP inference, and the
number of GP surrogates would have to equal the output dimensionality, which would be
very expensive memory-wise. Therefore, we propose an alternative approach to Chapter 5

for solving design of dynamic experiments for discrimination of black-box models.

6.2 A Generalised Formulation

This section describes a generalised formulation for design of dynamic experiments for model
discrimination. This formulation makes it possible to create a common optimal experimental

design framework for discrimination between rival dynamic models with:
e Analytical or black-box transition functions f;.
o Continuous- or discrete-time models.
e Multiple types of uncertainty.

Consider an ordered set of discrete time instances 7 = {7g,...,7r}. These are indexed as
t=0,...,T, with ¢t = 0 the starting time step of an experiment, and ¢ = T the final time
step. For simplicity, we abuse notation by writing ¢ € 7. For discrete-time models, assume
that the time points in 7 are equidistant, such that 7, = 79 + tA7 for some A7 > 0. Each
time step ¢ has a corresponding control input u; to the system, and the control signal u(7)
is piece-wise constant, with u(7") = u; for 7 < 7/ < 741. Measurements y, are taken at

times 7¢ € Tmeas C 7 -
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Assume we are given M rival state space models My, ..., My;. For a latent state 2, € RP=
and control input u, € RP+ at time step ¢, and model parameter vector 8; € RP%:: model

M, specifies a latent state transition, observation and measurement model

fi,:| + wgi) ,  (Latent state transition)

wgl = ¢; [iﬂﬂp U1, 0;
M; zgi) = Himgi) , (Observed states) (6.2.1)

ygi) _ zgi) + 'ugi) , (Noisy measurement)

where H; is a matrix selecting the observed states. The number of latent states D, ; may
differ between models M;, but the number of observed states D, ; = D, for all models. The

operator ¢; is defined as

01 (201w, 0] 1] = 2 + / i@, wp s, 85)dr, (6.2.2a)
Tt—1
for continuous-time models,
@ 0.1 ¢ = f(z® 0. 6.2.2b
¢1 Ty 1, Ut—1, U; fl _fl(wtflaut—la z)v ( L. )
for discrete-time models, and
@ 0. #] =2® () 0. 2.2
(bz Ty 1, Ut—1, U; fz *J3t71+fz(wt717ut717 1)7 (6 - C)

for discrete-time models with a A-transition.

6.2.1 Problem Uncertainty

In Equation (6.2.1), wgi) is zero-mean Gaussian distributed process noise, and 'vgi) ~

N(0,%,) is independent and identically distributed measurement noise. The process noise
wiz) has known covariance X, ; if M, is a discrete-time model, or covariance (7y41—7¢) X, ; if
M is a continuous-time model. We assume the measurement noise covariance X, is known

but may be different (X, = Ez(f)) for different models M;!. Apart from uncertainty due to

I'Note that model-specific measurement noise covariances interferes with some design criterion definitions.
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process noise and measurement noise, we may have uncertainty in the control input, initial
latent state and model parameters. Uncertainty in the control input? and initial latent state

is a reasonable assumption since we cannot control any physical system to infinite precision.

The control input w; ~ N (@, Xy, +) at time step ¢ is Gaussian distributed with mean given
by a user-specified desired control input % and covariance 3, ;. A noisy control signal may
be for example (i) the temperature in a computer-filled laboratory hit by direct sunlight,
(ii) controlling the inlet velocity in a reactor where a valve-opening mechanism has finite
precision, or (iii) the amount of substrate added in a fermentation experiment. Some prop-
erties, e.g. temperature, may be specified by an engineer but controlled by sensors and PID
controllers. The control covariance would generally be assumed to be relatively small, or the
experiment would not be controllable. The control covariance ¥, ; = Eff)t may be model-
dependent. For simplicity, let the control inputs u; be piece-wise constant and the control
covariance constant 3, ; = 3,. Simple extensions of the framework could accommodate
control inputs described e.g. by piece-wise polynomials or time-dependent control covariance.

Let @p.7—1 = {@o, ..., @r_1} denote the sequence of user-specified control inputs.

The initial latent state ar:((]i) ~ /\/’(;L(()i)(aicg), Eé”) is dependent on some user-specified initial
state settings 9 € R”+ common for all models. Different models may have different number
of latent states, but the number of variables to optimise is fixed. The initial state setting &g
is the variable to optimise, and we assume there is a known mapping hg)m : RP= — RP=

from &( to each model’s initial latent state space. The initial state setting &y may also in

this manuscript be referred to as the desired initial state.

The model parameters 6; ~ N (91'7 Yy ;) are Gaussian distributed with mean given by the
maximum a posteriori parameter estimate 6;. The model parameter covariance 3p,; is com-

puted using a Laplace approximation [Chen and Asprey, 2003], as described in Section 3.2.

6.2.2 Problem Formulation

The initial state settings & and the control inputs @g.7—1 are the main means by which the

experimental outcomes are controlled. For continuous-time models M; we may also want to

2Also known as input disturbances



118 6. Design of Dynamic Experiments for Model Discrimination

optimise the measurement time points Teas. Hence, we formulate the optimisation problem

of design of dynamic experiments for model discrimination as

arg max Z D** (y§1)7 cee 7y§1u)>

20, @o:T—1 o
meas

st. vte{l,...,T},Vie{l,...,M}:

mii) =i [ﬂliijl, w1, 0;

f1i| + wg?l 5
) ) 6.2.3
Mi . Zgl) _ Hlmgz) , ( )

i’ == 4o,
Cro (@0) 0, Oz ($§Z>) >0, C’T(Tmeas) >0,

Cu (i)

%

\Y

0, | C.(2") >0,

where D, is the design criterion, e.g. one of the design criteria described in Section 3.2 and
Section 4.1, and Cy,, C,,, Cy, C, and C are constraints on the corresponding variables (see

Section 6.5). The operators ¢; are defined as in Equation (6.2.2).

6.3 Latent State Transition

Let us study a single model M = M, with corresponding transition operator ¢ = ¢;. For
a latent state distribution x; ~ N(u,, X;), the predicted observed state and measurement

distributions are given by

zy ~ N(Hp,, HS,H') |

y, ~NHp, HS,H +3,).

Solving the optimisation problem in Equation (6.2.3) requires the predictive distribution
of the latent state x;. This means propagating the uncertainty in the inputs to the tran-
sition function f to its outputs. We assume we know a priori whether f is an analytical
function or a black box, i.e. whether we do (analytical) or do not (black box) have deriva-

tive information of f with respect to its inputs. The derivative information is required for
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closed-form uncertainty propagation from inputs to outputs using Taylor approximations,

as in Section 3.2 and Section 5.1.

To obtain derivative information from a black-box transition function f, we place inde-
pendent GP priors fiqy ~ GP(ma)(-), Kz (a) (-, -)ku,@) (- *)ka,@a) (-, ) on output dimensions
d=1,...,D, of f. Tosimplify notation, let f(&;) denote the transition function f evaluated
at the concatenated latent state, control input and model parameters &; = [x] ,u,, GT]T,

&; € RP«+DutDo - Additionally, let pp(@:) = Ef[f(@:)] and T (&;) = V¢[f(Z+)], such that

N(f(x¢),0), f analytical
F@e) ~ N (g (@), 2y (24)) = e (6.3.1)
N (@), 5(2y)), f black box

where the posterior GP mean p(-) and covariance X(-) are computed as in Equation (2.3.3)

on page 43.

Given an initial latent state estimate xo ~ N (g, Xo), a sequence of control inputs wu; ~
N, 3,), t =0,...,T — 1, a model parameter posterior 6 ~ /\/(é7 3y), and the latent
state transition described by Equation (6.2.1), we wish to find the approximate latent state
distribution @; ~ N (p,, ;) at any time step 1 < ¢ < T, with mean and covariance given

by the moments

Ky = Efﬂw[)’u():t—lae7w0:t—l [ml‘] ’ (6.3.2&)

= vaa:[)yuD:tfl-,gywO:t—l [mt} . (632b)

We assume that the control covariance 3,, model parameter covariance ¥y and process
noise covariance X, are all constant and independent of x; and @;. The latent state mean
p, and covariance 3; depend on the form of the transition operator ¢. Three different types
of transitions are considered here: discrete-time steps, discrete-time A-transition steps, and

continuous transitions.

Assuming the latent state, control input and model parameters are Gaussian distribution,
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the concatenated vector has Gaussian distribution &; ~ N (f,, 3;) with

Iy > 0 cov(x, 0)
= ||, = 0 . 0 , (6.3.3)
0 cov(z, )T 0 p

where cov(zg,0) = 0, and cov(z;, u;) = 0 (assuming u; # us—1) since the latent state

cannot depend on future control inputs.

To simplify notation, let Vg, with g € {f, 115, 3y,...}, denote the partial derivative of g(£)

with respect to a variable £, evaluated at the point E[€].

6.3.1 Discrete-Time State Space Models

The discrete-time state space model assumes the latent state transition is described by
M mp = f(,uy, 0) +wy,

with process noise w; ~ N(0,X%,). Using a first-order Taylor expansion of us(2) around
&1—1 = f1,_; (see Section 2.7.1), the mean and variance of the latent state at time step ¢ > 1

in Equation (6.3.2a) are approximately given by

By = Mf(ﬁtfl) ’
- T B
zi ~ vi’t—l utzt—l (vit,l ”f) + ECE + Ef(ll‘t) ) (634)

cov(x;,8) =~ Vo, cov(x,_1,0)" + Vo, Sy .

Note that Vg, ,p, € RP=*PatDutDo) - Derivatives of p, and X; with respect to g, 1,
¥;_1 and u;_; are calculated following the standard rules of matrix calculus, and requires

second-order derivative information of f or the GP prediction (see Appendix A.2).
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6.3.2 Discrete-Time Model with A-Transition

The discrete-time state space model with a A-transition assumes the latent state transition

is described by
M wt+1:$t+f(mt7ut79)+wt7

with process noise w; ~ N(0,X%,). Using a first-order Taylor expansion of us(Z) around
&1_1 = f1,_; (see Section 2.7.1), the mean and variance of the latent state at time step ¢ > 1

in Equation (6.3.2a) are approximately given by

By~ g+ g (),
- T N
3~ Ve, i Zi-1 (Ve i) + 2o+ 35(Ry), (6.3.5)

cov(x;, 8) = cov(zs_1,0) + Vo, cov(zi_1,0)" + Vou, g .

Note that Vg, ,py = I+ Vg, ,puy with the A-transition model, and that Vaz, ,p, €
RP=x(Da+DutDo) - Derivatives of p, and 3, with respect to p,_;, 31 and 4;— are calcu-
lated following the standard rules of matrix calculus, and requires second-order derivative

information of f or the GP prediction (see Appendix A.3).

It is common in GP regression to use zero-mean GP priors (mq)(-) = 0) to simplify cal-
culations. The zero-mean prior suitable is suitable for the A-transition state space model

formulation [Ko et al., 2007; Deisenroth and Rasmussen, 2011].

6.3.3 Continuous-Time State Space Models

For continuous-time state space models, the state transition between time steps is described

by the solution to the system of ordinary differential equations

() = fila(r), u(r).0) + (),
M: T (6.3.6)

z(1) = xo,
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with process noise distribution w(7) ~ N(0,3;). The control input u(7) may be a contin-
uous function of the time 7, but we will assume it is piece-wise constant. Model M’s state

prediction at time step ¢ is given by the solution x; = z(7;) to Equation (6.3.6) at time 7.

Let Z(7) denote the continuous concatenated latent state, control input and model param-
eters Z(7) = [z(7)",u(r)",0']", with Gaussian distribution () ~ N(ji(7),%(7)), and let

fiy denote the concatenated transition function

fis(r) = [up ()7, 0,0]" | jip(r) € RP=+DutDo

We find the latent state prediction x; ~ N (u,, 3;) at time step ¢ by extracting the corre-
sponding elements from fi(r;) and 3(7) (see Equation (6.3.3)) which we compute by solving

the following system of ordinary differential equations

i) = g (),
%2(7) = Vi S(r) + 5(7) (Vi) + diag(3 (7)) + Ba, 0, 0), (6.3.7)
/I(Tt—l) = p’tfl )
i(thl) = St—l .

Derivatives of u;,, and 3, with respect to p;, 3; and 1, are calculated by integrating over
the chain rule, and require second-order derivative information of f or the GP prediction

(see Appendix A.4).

6.3.4 Combining Original Transition Function and GP Surrogate

Equation (6.3.1) places a GP prior on the transition function f if f is black-box. The
reason for replacing black-box transition functions f with GP surrogates is that they allow
for approximating the derivatives of f, as Vf ~ Vpu, without resorting to finite difference
approximations. Finite difference approximations can be expensive if f is expensive to

evaluate or the input space is large, especially for second-order (and higher) derivatives.

Equation (6.3.1) presents a binary choice: either f is analytical, in which case ps(-) = f(:)

and Vyug(-) = Vf(-), or f is a black box, in which case it is replaced entirely with a GP
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Fully analytical approach ‘ Fully black-box approach ‘ Third approach

pp() =10, pp() = n(), pp() = fC),
%p() =0, 2p() =%0), 2p() =0,
V() = V() Vg () = V() Vg () = Vp()

Table 6.3: When f is analytical we use the fully analytical approach in Equation (6.3.1).
When f is a black box we may choose to replace it in our computations with a GP surrogate
for a fully black-box approach. The fully black-box approach has been used so far. A third
approach is to use the original black-box transition function f for computing the mean ps(-),
but use the GP surrogate to approximate its gradients Vs (-).

surrogate during prediction and ps(-) = p(-) and Vug(-) = Vu(-). This is the approach
described so far, and the approach used in Chapter 5. The idea is that the approximation
f() = p(-) is accurate enough that it allows us to design optimal experiments. However,

the approximation may not be accurate enough for robust model discrimination.

There is a third possible approach besides the fully analytical and fully black-box approaches.
In the third approach both the original transition function f and the GP surrogate are used.

Consider the following approximations

Ef@f,,ume[f(mtautv 0)} ~ f(/’ttvﬂty O)a

Ef@mut,g[vf(mt’ Uy, 0)} ~ vﬂ(l‘tv ﬂtv 0) )

i.e. use the original black-box transition function f for computing the predictive mean,
and the GP surrogate only for approximating the derivatives of f. Table 6.3 compactly
shows the difference between the fully analytical approach (where f is analytical), the fully
black-box approach (where only the GP surrogate is used) and the proposed third approach
(where both the original transfer function f and the GP surrogate are used). The third
approach limits the use of the GP surrogates to the purpose for which they were introduced:
approximating the gradients of f. Note that the third approach does not yield the addi-
tional uncertainty term associated with the GP surrogates, since X¢(-) = 0 when the exact

transition function mean is used.

This third approach is appropriate to use during model discrimination, i.e. when analysing

agreement between model predictions and experimental observations, even for expensive-
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e Training data

Prediction

(a) Input

Figure 6.3: GP mean prediction u(-) of a function f given four training data points. Even
if the approximation f(-) = u(-) is sufficiently accurate, the approximation Vf(-) ~ Vu(-)
may cause numerical issues. In the region around the training data point denoted (a),
the true gradient Vf goes from positive to negative whereas the GP approximation Vu
remains constantly positive. This discrepancy between the true gradient and the gradient
approximation may cause a numerical solver to have issues converging, or even throw an
error.

to-evaluate transition functions during model discrimination. This reduces the risk that a

model is discarded because of poor accuracy in the GP surrogate prediction.

However, there are also disadvantages associated with the third approach. If f is expensive
to evaluate, we may still choose to use the fully black-box approach to speed up design of

experiments, i.e. when solving the optimisation problem in Equation (6.2.3).

Table 6.3 shows that for the fully analytical and black-box approaches, the gradient Vi
is exact, whereas for the third approach the gradient Vus(-) &= Vu(-) is an approximation.
This may cause numerical issues when the GP mean pu(-)—or rather the gradient Vpu(-)—
does not capture the behaviour in the transition function f with sufficient accuracy, e.g. as
in Figure 6.3. If a numerical solver is provided with inaccurate gradients it may e.g. converge
slowly to a solution, time-out before reaching any solution, or even throw an error if a line
search in the direction provided by a gradient fails to find a step in input space that will
improve the value of the objective function. Therefore, from an optimisation point-of-view,
it may be better to use the fully black-box approach when solving the optimisation problem
in Equation (6.2.3), even if the transition function f is cheap to evaluate. On the one hand

this means solving an approximation of the optimisation problem that we would ideally like
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to solve, but on the other hand we may be more likely to find a solution.

6.4 Latent State Filter Update

We use the notation gy, and X, to denote the predicted latent state mean and co-
variance at time ¢’ given measurements y;., = {y;,...,¥y;}. Given latent state estimate
@ ~ N (g, Bye) at time ¢, let @1 | gy, Bepp ~ N (typ1)5 Beg1pe) denote the predicted

latent state distribution at time ¢ + 1, computed as in Section 6.3.

Since we assume a linear observation model z; = Hax;, the posterior latent state distribution
i1 | Y1401 ~ N(Bg1je415 Des1)e41) given an observation at time ¢ + 1 can be computed

using standard Kalman [1960] filter updates

T T -
Hepijerr = Beprpe + 2o H (HE 0 H +5) "Y1 — Hpy ), (6.4.1a)

Sttt = Do — DepH (HE g H +3) T HE, ), (6.4.1b)

The posterior latent state distribution p(x; |y;.,) is useful for discrimination between rival

models given observations.

The latent state filter update in Equation (6.4.1) using the first-order Taylor approximation
in Section 6.3 for the prediction is equivalent to the GP-EKF of Ko and Fox [2009], extended

with uncertainty in the controls and model parameters.

6.5 Constraints

The optimisation problem in Equation (6.2.3) is solved subject to constraints on the initial
state settings &g, the sequence of control inputs @g.7—1, the latent states x1.7, the observed
states z1.7, and the measurement time points Teas. Constraints are common in optimisation
problems due to physical or safety constraints in real systems, e.g. the maximum allowed
electrical current in a machine or drug dose given to a patient. However, we may also need

to apply constraints on the latent states xi.7 if the transition function f is replaced with a
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data-driven surrogate, e.g. a GP surrogate (see Section 6.5.3).

The initial state settings &, the control signal ;.7 and the measurement time points Tmeas
are independent, deterministic variables set directly by the user. The latent states ;.7 and
observed states zi.7 are dependent, stochastic variables. Constraints on independent and

dependent variables are handled differently.

This section considers two types of constraints: The first type are linear constraints

CE—-€>0, (6.5.1)

where € € {&, %, %, 24,7}, & € RP¢ is an independent or a dependent variable, C €
RPexDe and € € RP¢, and the inequality is applied element-wise; The second type of
constraints are constraints on the absolute difference, e.g. the rate of change, between in-
dependent variables. We will not consider constraints on the absolute difference between

stochastic, dependent variables.

6.5.1 Independent Variable Constraints

The independent variables in the optimisation problem in Equation (6.2.3) are the initial
state settings &, the sequence of desired control inputs %g.7—1 and the measurement time
points Tmeas (for continuous-time models). Through Section 6.5.1, let € € {&¢, @, 7} denote

an independent variable.

Linear constraints such as in Equation (6.5.1) on independent, deterministic variables are
straight-forward to handle. Note that the constraint in Equation (6.5.1) is written in the

format of constraints in the Equation (6.2.3) optimisation problem.

Constraints on the absolute difference between independent variables are useful for two
reasons: Firstly, there may be limitations (for physical or safety reasons) to how quickly the
control input @; can be varied; Secondly, a minimum amount of time between measurements

need to be enforced during optimisation. Let the absolute difference in dimension d =
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1,..., Dy of the control input between consecutive time steps be upper-bounded by A, (g
Qg1 (d) — Tt ()| < Dua -
Using a standard reformulation, this constraint can equivalently be written as
g1, (@) — Gy, a) + Duy@) 20 A Gy gy — Tyg1,a) + Duy@@) 20,

using the constraints format in Equation (6.2.3). Additionally, let the absolute difference in

time between two measurement time points 7; and 74+ be lower-bounded by A, > 0
‘Tt - Tt/| Z AT 5 VTt7Tt/ S 7;“eas . (652)

This constraint is non-convex. To simplify the problem formulation, we introduce additional
constraints to maintain a fixed order of the measurement time points, and reformulate

Equation (6.5.2) in convex form as

=Ty —Ar 20, 2>,
v7—t»7-t’ € Tmeas :
T —T—A; >0, t<t.

using the constraints format in Equation (6.2.3).

6.5.2 Dependent Variable Constraints

The dependent variables in the optimisation problem in Equation (6.2.3) are the latent
states ®1.7 and observed states z;.p. Constraints on the dependent variables are typically
more difficult to satisfy [Pesch, 1989; Faust et al., 2016], because, as the name suggests, they
are dependent on the initial state &y and the control sequence @g.7_1. Constraints on the

dependent state variables x1.7 and z;.7 are often referred to as path constraints.

Let model M predict the latent state distribution x; ~ N (u,, X;) and observed state dis-
tribution z; ~ N(p,,X.) at time step ¢, where p, = Hy, and 3, = HX,H'. Through

Section 6.5.2, let &, ~ N (g, Be) € {x4, 2:} denote a Gaussian-distributed dependent vari-
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able.

We will assume that the path constraint may be time-dependent, such that the expression

in Equation (6.5.1) becomes
Ci&, —€,>0. (6.5.3)
To simplify notation, let Z; denote the space Z; C RP¢ at time step ¢ defined by

2 ={¢|Ct—-¢ >0},

such that satisfying the linear constraint in Equation (6.5.3) at time ¢ is equivalent to satis-
fying &, € ;. Multiple sources of uncertainty affect the states &, and need to be accounted
for. Path constraints on variables with unbounded probability distributions (e.g. Gaus-
sian distributions) are referred to as path chance constraints. The path chance constraint

equivalent of £, € Z; is
P e5)>1-7, (6.5.4)

for some v € (0,1) that determines the chance constraint’s confidence level requirement.
Path chance constraints of the type in Equation (6.5.4) are typically analytically intractable
[Prékopa, 1995, Ch. 11; Shapiro et al., 2009, Ch. 1|. There is a range of different tractable
approximations for path chance constraint, e.g. the scenario approach [Calafiore and Campi,
2006], the sample average approximation [Pagnoncelli et al., 2009], and the convex second-
order cone approximation [Shapiro et al., 2009, Ch. 1; Mesbah et al., 2014b]. In this work
we will only consider the cone approximation, and compare it to a path constraint that does

not account for the uncertainty in the state &,.

Mean Constraint

We let the term mean constraint denote the regular linear constraint in Equation (6.5.3)
operating on the state mean, i.e. requiring pt, € Z;. The mean constraint is used by existing

literature on design of dynamic experiments (see Table 6.2). Figure 6.4a shows an example
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& &
§i,(2) ol £e,(2) E !
£, G
& §t,(1) & £ &t,(1) &
(a) Mean constraint (b) Cone constraint

Figure 6.4: Example with constants defined by Equation (6.5.5) with (a) mean constraint,
where the mean g, of the distribution must lie within the bounds, and (b) cone constraint,
where the mean + some number of standard deviations (the dashed box) must lie within
the bounds.

defined by
1 0 3
-1 0 _ —£
C, = , &= Sl (6.5.5)
0 1 g,
0 -1 -&

The mean constraint has the advantage of simplicity, at the expense of not accounting for
the uncertainty in &,, and is approximately equivalent to solving the optimisation problem

subject to
= 1) De
P, €5 > (5) , VteT.

Hence the mean constraint provides a poor guarantee that the constraint &, € =; will be

satisfied for all time steps t.
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Cone Constraint

The convex second-order cone approximation [Shapiro et al., 2009, Ch. 1; Mesbah et al.,

2014b] decomposes the linear constraint in Equation (6.5.3) into multiple constraints

c-tl,—,(j)St - Et,(j) >0, (6.5.6)

for C; = [ci1),-- -5 € (Do)’ and &, = [Et,(l),...,gt’(Dc)]T Each individual chance con-

straint P(CI,(j)Et — Et,(j) >0) > 1 — v can be satisfied by satisfying the constraints

. _
O |yt anfa see o | - 0] 50 (6.5.7)
. B T Q4 [ €y (5)=ECH () . _ >0, .5.

St () - £6,07)

where o = v/2erf ' (1 — ), with erf ~'(-) the inverse error function. Figure 6.4b illustrates

the chance constraint for the example defined in Equation (6.5.5).

If 3¢ is constant, then the cone constraint in Equation (6.5.7) is equivalent to the mean
constraint for a smaller space =, C Z;. Whereas the mean constraint provides a poor
guarantee that the chance constraint will be satisfied, the cone constraint may be overly

conservative since it decomposes the full chance constraint into individual chance constraints.

6.5.3 Latent State Constraints for Data-Driven Surrogate Models

When solving Equation (6.2.3), the predicted latent state mean u, may stray away from the
latent state space region where there is latent state training data X = {x1,...,2znx}. This
can cause numerical issues in the solver as the GP predictive variance grows large, and we
may have reasons not to trust a corresponding allegedly optimal solution ;.7. Hence p,

should be appropriately constrained as p, € X.

The feasible control space U is assumed known, and control input training data can be sam-
pled appropriately to fill the control space. We sample model parameter training data in a
small region around the maximum a posteriori parameter estimate . This allows approx-

imation of the gradient of f with respect to 6, e.g. required for the Laplace approximation
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of ¥y. Assume the observed states z; are subject to a constraint z, € Z, Vt € T. Ideally,

we would like to sample latent state training data from a domain AX™*
X*:{w ‘ Jueld :Hze Z H¢[m,u,é\f]ez} ,

i.e. the space of latent states x (i) whose corresponding observed state z; = Ha; satisfies
z¢ € Z, and (ii) for which there exists a control input w that generates a transitioned state

T 41 = ¢lx, u, 0| f] with corresponding observed state z;,; that satisfies 24, € Z.

Finding X* is non-trivial even if the inverse transition function f~! is known. X* can be
approximated through exhaustive sampling, but we may wish to limit the number of model
evaluations, especially if f is expensive to evaluate. Proceeding, we will assume X ~ X™* is

a known hypercube
X = {w ‘ Vde {1,...,Dz} D Zg) Sx(d) Sj(d)} .

GP training data is sampled from X'. In our implementation, latent state training data is
sampled from a grid (with samples on the borders of X) and combined with grid-sampled
control training data and model parameter samples drawn from a small uniform distribution
centred around 6. Additionally, the noise variance hyperparameters U%,( Q) is assumed greater

than zero for all d = 1,..., D, independent GP priors’ covariance functions.

For numerical stability when solving Equation (6.2.3), especially for problems with initial
latent states on the edge of X', we propose relaxing X', by using a latent state constraint p, €
X'dom for the GP surrogate corresponding to output dimension doyu of f, dout = 1,..., Dy,

with

X = {w ‘ Vidin €{1,.... Dz} 1 Zq) = Xdowsdin < T(din) < T(din) +Xdom,d;.,} ;

where Xd,u,,din = [Z(dm) — (g / A(dow),(din) A0 A(d,,),(4;n) denotes input dimension din’s

lengthscale hyperparameter of output dimension do,t’s GP surrogate’s latent state covariance

function k, (4. This ensures X C Xy, Ydous € {1,..., Dy}

out )
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6.6 Model Discrimination

Previous sections show how to approximate the models’ marginal predictive distributions
and incorporate the predictive uncertainty into the Equation (6.2.3) experimental design
problem constraints. The optimisation problem can thus be solved to find the optimal
dynamic experimental design for model discrimination. The optimal experimental design is
given by the desired initial state &, the desired control signal @g._, and the measurement
time points Tmeas- Once the optimal experimental design is found, an experiment may
be launched and measurements Y = {y,}te7.... collected. This section will discuss the

subsequent model discrimination step.

Let us re-visit the notation of Section 6.4, with &;;, the estimate of some variable £ at time
step t given measurements up till time step . The rival models Mjy,..., My, produce
predictions {yill())}, t € Tmeas, With

(2) (2)
Yo~ P (yt\o

SE K i DEe gl
Zo, Uo:t—l) %N(Hiﬂi\()p HiEEH))Hi + Ey) :

Similarly, the rival models M1, ..., My, produce filtered predictions {yg‘lz}, t € Tmeas, With

(@) (@)

Yy ~ D <yt|t oy U1 Y1 - - .,yt) ~N <H“u§|2t), lei\le—; + Ey) ,

Efg and covariance 37

with the filtered mean p it

given measurements computed as in Sec-

tion 6.4. For convenience, we define

L

t|t!

(L(i)

t)

. . —1 .
@) _ (1.0 (%)
5t\t’ - (Ltlt/) (yt - Hiﬂt|t/) )

)y =H3sVH] +3,,

tlt!

@) the

t]t

where Lgft),

is the lower-triangular Cholesky decomposition of the variance of ygliz, and
weighted vector-difference between observation y, and prediction H; p,gt),, with ¢’ € {0,¢} and

t € Tmeas- The weighted differences 5t

e should have a distribution given by 557’2, ~ N(0,I)

under the hypothesis that model M, has generated the data Y. The log-likelihood of an
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observation y, given a model M, is

L s\ 50
log N/ (yt —5 <6t‘t,) 6t|t, + const. .

i 2 T A
Hiplf), B, H] + %, ) = — log |L{)

tt’ t|t’

Section 3.2 describes three discrimination criteria from literature: ranking based on nor-
malised model likelihoods [Box and Hill, 1967], the x? test [Buzzi-Ferraris and Forzatti,
1983|, and ranking based on Akaike weights [Michalik et al., 2010]. This chapter will not
compare the performance of these different discrimination criteria against each other; only
the x? test will be used for model discrimination. Following the reasoning of Buzzi-Ferraris

and Forzatti [1983], the weighted squared residuals (6(1)

tlt,)Tﬁilit), should be y2-distributed.

(5(1) )T é(i)

The x? score is defined as 1 minus the x? cumulative distribution at Yoier ter) O

with |Tmeas| X Dy — Dg,; degrees of freedom. Models are deemed inadequate if their corre-
sponding x? score is below some threshold, e.g. 1E-3. The x? test is more conservative than

ranking based on log-likelihood or Akaike weights, which may result in more experiments

but also fewer false positives (i.e. choosing the wrong model).

Given the choice of using the x? test for model discrimination, there are still two alterna-

tives for computing the x? score for each model: to use the weighted residuals 6% from
prediction alone, or the filtered versions (5t(‘22 Both alternatives have their advantages and

disadvantages. The residuals 5% from prediction shows the predictive power of a model.

t|0
Predictive accuracy is typically one of the main goals of modelling. Someone in favour of
()

e might argue that looking at predictions alone means we base the choice of model

using §
on the specific process noise realisations in each experiment. This leaves us vulnerable to
outlier process noise early in the experiment, which may have a large impact on latent states
and measurements for later time points. However, since we add the process noise covariance
to the model predictive covariance at prediction, possible outlier cases should be covered as
long as the Gaussian process noise approximation is valid. In many cases, models are also
similar enough that even when model predictions differ significantly, the filtered predictions
may be nearly indistinguishable, i.e. data generated from a model M; may be explained

well by a rival model M, if model M, is allowed to correct its prediction at each time step

by blaming observed deviations solely on noise.
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For the purpose of the simulations in Section 6.7, we will compute each model’s x2 score using

the residuals 6

N computed only from predictions. For models with black-box transitions

functions f replaced with GP surrogates, we use the exact transition function mean for the

purpose of model discrimination (see Section 6.3.4).

6.7 Results

This chapter makes two novel contributions to design of dynamic experiments for model
discrimination: we allow for black-box transitions functions in the models, and we account
for more sources of uncertainty in the optimisation problem. In our literature review we
did not find any previous work accounting for uncertainty in the control signal, or the effect
of path chance-constraints on design of experiments. This section presents experimental

results for the following:
e A comparison of performance of mean and cone path constraints.

e Simulations with (i) correctly modelled, (ii) underestimated or (iii) overestimated con-

trol signal covariance.

e The performance of the GP surrogates as analytical emulators of black-box transition

functions.

To this end, we have a case study from Espie and Macchietto [1989] that considers yeast
fermentation. We also present a comparison of result using our methodology to results

reported by Espie and Macchietto [1989] and Chen and Asprey [2003] for this case study.

6.7.1 Case Study: Yeast Fermentation

The yeast fermentation case study is taken from Espie and Macchietto [1989]. There are
D, = 2 latent states (biomass and substrate concentration, respectively) and D,, = 2 control
inputs (feed velocity and feed substrate concentration). We observe both states, hence

D, =D, =2and H; =H =1, with Dy, € {3,4} model parameters.
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For simplicity, we omit the model index (except in M;) and time step index when writing

out the models below. Model M; assumes Monod kinetics with constant specific death rate

dzx
T;:(T_Ul_94)$17
dza 11y
My P §+U1(U2 x2),
_ 911‘2
Oyt

Model M5 assumes Contois kinetics with constant specific death rate

dzx
d77_1:(7’—m—94)$17
dza 11y
Mo ar = 0 +U1(u2 Iz),

0122

r=—
Orx1 + 22

Model M3 assumes linear specific growth rate

d
%:(r—ul—eg)xl,
daxo ray
Mz {2 = _
3 a1r o, + uy (u2 Ig) s
r = 011’2 .

Model M, assumes Monod kinetics with constant maintenance energy

dz
d—Tl =(r—u)zy,
dz rx
My T::—T;-FM(UQ—IQ%
012
r= .
92 + 22

Espie and Macchietto [1989] do not consider any variable uncertainty in their formulation
of the experimental design problem. They simulate 72 hours of yeast fermentation, with
measurements taken every 0.75 hour. The controls have bounds u; € [0.05h™!, 0.2h~!] and
uz € [5g/L, 35g/L]. Figure 6.5 shows an example of model predictions for models fitted to

data generated from model M; using a random uniformly sampled control signal wg.7—1,
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Figure 6.5: Example of model predictions for Espie and Macchietto [1989] yeast fermentation
case study. The model predictions are generated from a random uniformly sampled control

input {Lo;T,1 .
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Figure 6.6: Yeast fermentation case study model predictions for Espie and Macchietto [1989]

optimal control input Ugy.

with time steps 73 = ¢ x 0.75h. Espie and Macchietto [1989] find the following control inputs

optimal for model discrimination:

ui(r) = 0.2h7 1,

5¢/L  if33h <7 <51h
ug (1) =
35g/L  otherwise.

Let U, denote the discretised optimal control signal 4¢.7—1 found by Espie and Macchietto
[1989]. Figure 6.6 shows the corresponding model predictions. We let the model parameters

0, take the estimated values reported in Espie and Macchietto [1989]:
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0, = [0.30, 0.25, 0.56, 0.02},
0> = [0.30, 0.03, 0.55, 0.03},
03 = [0.12, 0.56, 0.03} ;
04 = [0.30, 0.30, 0.55} :

We find that if we perturb the elements of Ugy; by 1.5%, 5% or 10% and use the perturbed
control inputs as an initial guess for optimiser in our experimental design formulation, we
retrieve Uf,; again. We see this as a sanity test of our methodology; for the simplest

formulation of the experimental design problem we can rediscover a known optimum.

Let us add measurement noise, which results in parametric uncertainty. Chen and Asprey

[2003] assume the noise covariance X, is known

0.06 —0.01
—0.01 0.04

Chen and Asprey [2003] discriminate between the two most similar models M; and Ma.
Data is generated from M; with parameters 8 = [0.25, 0.25, 0.88, 0.09]. For the experi-
mental design they use the Dyg design criterion in Equation (3.2.7) weighted by the inverse
noise covariance

T

Deal(ttor—1) = Y (214 — z2.4) By (214 — 224) -

t=1
Chen and Asprey [2003] find 20 optimal measurement time instances Tmeas and an optimal
control signal U¢,, consisting of 5 piece-wise constant sections. We find D¢ (U, ) = 2601.
For the same measurement time instances and control switch time instances, we find a

solution U}, ; that yields Dca (U,

new, new,1

) = 2805, i.e. a 7.8% larger divergence. We assume

this discrepancy is due to the improvement in optimisation solvers after 20 years. Figure 6.7

*
new,l*

shows both control signals U, and U

We add process noise with variance X, = 0.01 - I, i.e. the same order of magnitude as

measurement noise. With process noise, we find that Chen and Asprey’s [2003] optimal
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Figure 6.7: Optimal control input U, from Chen and Asprey [2003], our solution U

and our solution Uy, 5 for the case of added process noise.
,

control signal yields Dca (U, ) = 244. We find the optimal control signal U, , that yields

new,

Dca(Upey2) = 263, ie. an 8% larger divergence. Figure 6.7 shows that U}, # Uy

new,2’

which means that adding process noise affects the optimal control signal.

For the remaining experiments we will look at all M = 4 models M; and use true pa-
rameter values 6 = [0.25, 0.25, 0.88, 0.09] and measurement noise variance X, from Chen
and Asprey [2003]. We assume there is no process noise, hence X, = 0. We start with-
out any experimental data and initial model parameter estimates ¢; 4 = 0.5 and covariance
3g,; = 0.05-1 for all models M; and d € {1, ..., Dg;}. The reason for this is the difficulty in
finding initial experimental conditions that do not immediately render one or more models
obviously inadequate. The initial states are given by z1 = 1 and zy = 0.01, with initial
latent state covariance ¥ = diag(1073, 107%). We let the control inputs have covariance
given by 3, = diag(1075, 1073). We simulate 72 hours of fermentation, with measurements
and changes in control signal every 1.5 hours (i.e. 48 measurements y, and control inputs

; in total). The controls have bounds u; € [0.05h~1, 0.2h~!] and us € [5g/L, 35g/L).

6.7.2 Comparing Path Constraints

We compare the results of solving the design of experiments optimisation problem in Equa-
tion (6.2.3) using (i) the mean path constraint in Section 6.5.2, or (ii) the cone path constraint
in Section 6.5.2 with a = 2 standard deviations margin. We are interested in comparing

the constraints’ performance in terms of the number of violations of the path constraints,
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Experiments Avg. num. of models
required remaining after #n exp.

Bound Constraint | Mean Std #1 #2 #3
7 Mean 2.04 0.20 2.00 1.04 1
Cone 2.44 0.51 2.64 1.44 1
10 Mean 2.00 0 2.00 1 -
Cone 2.16 0.37 2.12 1.16 1
15 Mean 2.08 0.28 2.04 1.08 1
Cone 2.00 0 2.00 1 -

Table 6.4: Average number of experiments (with standard deviation) required for successful
model discrimination in 25 simulations of the yeast fermentation case study, using a mean
or cone path constraint (Section 6.5) with an upper bound on z; 5. The right-most columns
show the average number of models (out of four) that pass the x? test after 1, 2 or 3
experiments.

how severe the violations are, and the number of experiments required for successful model

discrimination.

Let Zo be a constraint upper bound on the substrate concentration, such that we wish to
satisfy z; (o) < Zp for t = {1,...,T}. For the simulations, we let the upper bound take one

of the values zy € {7,10, 15}.

Results are collected through simulations. Each simulation follows the experimental design
process laid out in Figure 3.2 on page 55: (1) parameter estimation, (2) model discrimination,
(3) experimental design, (4) execution of experiment, and return to step (1). Measurements
y,.p are generated in each simulated experiment, and used for model discrimination using
the x2 test, as described in Section 6.6. Models are deemed inadequate if their x? score
is below a given threshold (see Section 3.2.1). We use the same threshold, 1E-3, as in

Section 4.3 and Section 5.3. As discussed in Section 5.4, this threshold is arbitrary.

Table 6.4 shows the performance in 25 simulations of the different path constraint types
(mean constraint and cone constraint) in terms of the average number of experiments needed
for successful model discrimination. Model M; was correctly identified as the true data-

generating model in all simulations.

We are interested in comparing the performance of the two different types of constraints.

When comparing the performance, we are faced with the following problem: The mea-
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surements y,.p in each experiment in each simulation are generated from one particular
realisation of initial latent state xg ~ N (&g, X, ), control inputs w; ~ N(@, X,) and

measurement noise v ~ N(0,%,). We can ask the following two questions:

1. If we run an experiment with control @g.,_;, and do not observe any constraint vi-
olations, is the control input @g.,_, safe? If the constraints are not violated for a
particular noise realisation, they may still be likely to be violated for other experi-

ments generated using the same control a.7_;.

2. Are all constraint violations equally bad, or are some worse than others? We may
think we have a safe control 4.,_, but due to noise we violate the constraint a tiny

bit. Is this equally bad to completely overshooting the constraint?

Instead of relying on single noise realisations, we use Monte Carlo sampling to make a

statistically more sound assessment of how safe a control signal really is.

Let Mj denote the data-generating model (M; with “true” model parameter values). As-
sume we are studying a control sequence g.;_;. We generate N, = 100 noisy control
sequences Ug.r—1,n: # = 1,..., N by drawing samples u;,, ~ N (u;,X,). For each control
sequence we sample a random initial state =g, ~ N([1, 0.01]",3). The control sequences
and initial states are used with the true model M, to generate corresponding sequences
of observed states z1.p,. Let Z = {z1.11,...,21.7.n,} denote the set of observed state
sequences. These observed state sequences are different possible experimental outcomes
generated by the same control sequence 4., This helps answer question 1 above: The
control sequence is completely safe if none of the observed state sequences in Z violate our

constraints.

Next, let Zyio1 define the set of observation sequences for which the constraint z; (o) < 2o is

violated for at least one time step ¢:

Zyiol = {ZI:T | zir €L N Tt Zt,(2) > 22} .

The wviolation level V(-) for an experiment is the ratio of simulations that violate the con-
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straints

~ Zvi
14 <u0:T71) = | N01| .

The violation level V (-) helps answer question 2 above: A violation level of 0 % means that
a given control signal is apparently safe, whereas a violation level of 100 % means that a
control signal is almost guaranteed to result in constraint violations. A control signal with
a higher violation level is deemed worse than a control signal resulting in a lower violation

level.

We compute the violation levels for all optimal control signals for the 25 simulations with
each set of mean or cone constraint and upper bound z; € {7,10,15} The histograms in
Figure 6.8 show the ratio of experiments (i.e. optimised control signals) at each violation
level. We see e.g. in Figure 6.8(a) that around 12 % of the control signals @g.,_; optimised
with the mean constraint and upper bound z, = 15 result in violation levels of 100 %. We

make three observations:
e The cone constraint results in fewer constraint violations than the mean constraint.

e The cone constraint results in less severe constraint violations (lower violation levels)

than the mean constraint.
e The number of constraint violations increases as the upper bound decreases.
All three observations agree with expectations.

The experimental design process starts with parameter estimation. In this case study each
simulation starts without any available experimental data, with parameter prior means
0;,q = 0.5 for all models ¢ = 1,...,M and d = 1,..., Dy ;. Data is generated from model
M with “true” parameter values 8 = [0.25, 0.25, 0.88, 0.09]. We assume the Espie and
Macchietto [1989] case study has identifiable model parameters. Figure 6.9 shows the model
M parameter estimates in the 25 simulations with a cone constraint and zo = 15. We see
that 67 and 64 are well-estimated. The 2 and 603 estimates have higher variance, and the
estimates do not seem to be directly correlated (the 62-03 plot shows a cloud of estimate

parameter values). This indicates 65 and 03 may suffer some level of unidentifiability. How-
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Figure 6.8: The violation level is the ratio of Monte Carlo simulations using optimised control
signals that result in constraint violations z; (s) > Zz2. The vertical axes show the ratio of
optimised control signals for each violation level (horizontal axes) for a given constraint.
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Figure 6.9: Model M; parameter estimates from 25 simulations of the Espie and Macchietto
[1989] case study with a cone constraint and Z = 15. The black dot at [0.5, 0.5] in each plot
denotes the parameter prior mean, the red lines show the parameter estimate paths, and the
blue dots the final model M parameter estimates. 6; and 6, are well-estimated. 0 and 63
estimates have a higher variance and do not seem to be correlated, possibly indicating some
level of parameter unidentifiability.

ever, since the 0y and 03 estimates are consistent, we do not believe this should affect the

result of our experiments.

In Figure 6.10 and Figure 6.11 we compare the optimal control signals .71 found using the
mean and cone constraints, for the first and second experiments designed in each of the 25
simulations. Also plotted are the corresponding experimental measurements y,.,. We note
large similarities between the control signals found in each simulation, and with the different
constraints. In the first experiment, the optimal strategy is apparently to shock the system
early by giving a high initial control input, and then maintaining a constant low input. In
the second experiment the optimal strategy is apparently to keep us constantly at its lowest
value, while ramping up u; with constant small perturbations. The observed biomass y(1)
and substrate y(g) curves are very different between the first and second experiment. In the

first experiment the parameter estimates are more uncertain than in the second experiment,
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Figure 6.10: Plots showing optimal control signals and corresponding observations for the
first experiment designed in 25 simulations of the Espie and Macchietto [1989] yeast fer-
mentation case study. We compare the controls and observations found with mean and cone
constraints, with Z; = 15. With the mean constraint there are constraint violations in (d).
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Figure 6.11: Plots showing optimal control signals and corresponding observations for the
second experiment designed in 25 simulations of the Espie and Macchietto [1989] yeast
fermentation case study. We compare the controls and observations found with mean and
cone constraints, with Zo = 15. We see no constraint violations.



146 6. Design of Dynamic Experiments for Model Discrimination

so we wish for the optimal experiment to be more “cautious” in order not to yield constraint
violations. However, the mean constraint does not incorporate this uncertainty, and we
do see constraint violations in the first experiment. These are the constraint violations
that appear in Figure 6.8(a). The second experiments are far from violating the constraint

zo = 15.

6.7.3 Effect of Control Input Uncertainty

In the optimisation problem in Equation (6.2.3) there are several covariance matrices that
are assumed known. In most real-world applications, the exact covariances are not known
and have to be approximated. We wish to study the effect of under- or overestimating the
size of the covariance, compared to having the correct covariance. We choose to study this by
varying the control input covariance. More specifically, let models M; assume control input
distribution u; ~ N (4, ZAJ,L). We generate experimental data by sampling control inputs

uy ~ N (@, 3,). In the simulations, the modelled covariance 3, and the true covariance

3. are assigned values denoted “small” and “large”, with

small: diag(1E-8, 1E-4), (6.7.1a)

large: diag(1E-4, 1E-2). (6.7.1b)

There are four combinations of small and large modelled and true control covariances. The
resulting scenarios can be described as (i) correctly modelled uncertainty 3, = %, (ii)

underestimated uncertainty |3,| < ||, and (iii) overestimated uncertainty |2, | > |.,].

Table 6.5 shows the result of 25 simulations of the yeast fermentation case study with the
different modelled and true control covariances. A cone path constraint is enforced with an
upper bound Z; = 15g/L on the substrate concentration (see Section 6.7.2). We see that,
as expected, a correctly modelled small control covariance yields the best result in terms of
average number of experiments required and the model discrimination success rate. A large
modelled control covariance results in a higher average number of required experiments,
and a marginally lower success rate. Model discrimination is deemed failed if an incorrect

model is identified as the data-generating model, and inconclusive if the experimental budget



147

Control Experiments Model Cone
covariance required discrimination constraint
> M Mean Std Succ. Fail. Inconcl. | violations
small small | 2.04 020 | 100% 0% 0% 0%
small large | 2.05 0.22 84% 0% 16 % 4%
large small | 2.58 097 | 6% 0% 4% 0%
large large | 2.21 0.66 %% 0% 4% 0%

Table 6.5: The first set of columns shows the modelled control covariance 3, and the true
control covariance X, used for generating experimental data defined in Equation (6.7.1).
The second set of columns show the average number of experiments required for successful
model discrimination in 25 simulations of the yeast fermentation case study. The third set
of columns show the rate of successful, failed or inconclusive model discrimination. The last
column shows the rate of simulations in which the cone path constraint was violated.

(maximum number of allowed experiments) is exhausted or the y?-test discards all models
as inadequate. In these simulations the experimental budget was never exhausted, i.e. all
instances of inconclusive model discrimination is due to all models being deemed inadequate.
We see that the rate of inconclusive model discrimination is significantly higher when the
true control covariance is underestimated, and we have a violation of the cone constraint.
Hence, we are punished less for conservative estimates of the control covariance than overly

optimistic estimates.

6.7.4 Black-Box Transition Functions

Next we study the performance of the GPs surrogate approach. The performance is com-

pared to the analytical results in Section 6.7.2.

The GP surrogate predictions are used in the simulations during design of experiments.
As described in Section 6.3.4, the original (“black-box”) transition function f is used to
compute the means NY’T of the predictive distributions during model discrimination, with
the derivatives V() of the GP surrogates’ predictive mean used to compute the predictive

covariances X\

Each simulation starts with no initial data and a relatively uninformed model parameter
distribution. This model parameter distribution is used to design the first experiment.

Once an experiment has been executed, the model parameter distribution is updated before
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Experiments Avg. num. of models
required remaining after #n exp.

Bound Constraint | Mean Std #1 #2 #3
7 Mean 2.04 0.20 2.00 1.04 1
- Cone 2.44 0.51 2.64 1.44 1
< o Mean 200 0 2.00 1 -
< Cone 2.16 0.37 2.12 1.16 1
= 15 Mean 2.08 0.28 2.04 1.08 1
Cone 2.00 0 2.00 1 -
15 Cone 2.12 0.33 2.08 1.12 1

Table 6.6: Performance comparison of analytical and GP approaches. The bottom, high-
lighted row shows the performance of the GP approach, with average number of experiments
(with standard deviation) required for successful model discrimination in 25 simulations of
the yeast fermentation case study, using a cone path constraint (Section 6.5) with an upper
bound on z; 5. The right-most columns show the average number of models (out of four)
that pass the x2 test after 1, 2 or 3 experiments. Compare to the analytical approach results
in Table 6.4, reproduced here for convenience.

the models’ x? score is computed during model discrimination. For the case of analytical
transition functions in the path constraint test in Section 6.7.2 and the control uncertainty
test in Section 6.7.3, the model parameter prior described in Section 6.7.1 is used. However,
for the case of GP surrogates, where uncertainty in the model predictions is added, the
model parameter prior in Section 6.7.1 is too large—the uncertainty grows too large to be
able to satisfy the path constraint zZ; = 15g/L. We solve this by reducing the variance in
the model parameter prior to Xy ; = 1E-4 - I when using the GP surrogates. On the one
hand this means the prior parameter estimate may be overly confident and there is a higher
probability of path constraint violations in the GP surrogate tests, but on the other hand

the optimisation is more likely to converge on a feasible first experiment in each simulation.

Table 6.6 shows the performance of the GP surrogate approach in terms of average number
of experiments required for successful model discrimination in 25 simulations of the yeast
fermentation case study. Model M; was correctly identified as the true data-generating
model in all simulations. Compare to the results in Table 6.4 for the analytical method.
The GP surrogate approach has a marginally worse performance, but still very similar to

the analytical method.
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x? score
X2 score

12 3 4 12 3 4

Number of experiments Number of experiments
(a) Analytical (b) GP surrogates

Figure 6.12: Evolution of the average x? scores (with one standard deviation) for the four
rival models in the yeast fermentation case study, with experiments design using (a) the
analytical approach, and (b) the GP surrogates approach.

Figure 6.12 shows the evolution of the average x? scores (with one standard deviation) for
the four rival models in the yeast fermentation case study. Figure 6.12a shows the average
x? score for the analytical approach with a cone constraint, and Figure 6.12b the average

x? score using the GP surrogates approach.

6.7.5 Computational Cost

The GP surrogate method assumes the black-box transition function is sufficiently expensive
to evaluate to make it computationally infeasible to solve the design of experiments problem
using either (i) finite difference approximations of the function’s gradients for approximate
marginalisation, or (i) Monte Carlo techniques. But the GP surrogate models also intro-
duce computational overhead. The Espie and Macchietto [1989] yeast fermentation considers
cheap-to-evaluate analytical models. Table 6.7 compares the computational time for design-
ing one experiment in this continuous-time case study using the GP surrogate method or
the analytical method. It is clear from the table that the GP surrogate computational over-
head may be significant. ~Each GP surrogate model (one for each output f; 4 of each
model f;) has one the order of N = 1000 training data points. As described in Section 2.6,
GP regression scales as O(N) and O(N?) for mean and variance computation, respectively.

Computing the gradients Vg ., ot required for the first-order Taylor approximation of the
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Action Computational time | Computational time
(GP method) (analytical method)
Train models 8-15s -
Laplace approx. 9 5—6min 1-95
of 29’2'
Solve for 4], 6-10h 2-5min
Jvaluate 58-59s 0.10-0.15s
(Y17 | o, U1.p)

Table 6.7: The numbers in this table illustrate the computational overhead introduced by
using GP surrogates for continuous-time models. The numbers are taken from a single run,
with added time logging, on a machine with an Intel Core i7 9700K 3.6GHz 8-core processor
and 16GB RAM.

marginal predictive distribution N (f, f]) in Section 5.1 scales as O(DyN (D, + D, + Dy)).
For continuous-time models the computational overhead of using the GP surrogate method
for design of experiments is often an order of magnitude higher than for discrete-time models,
due to the number of surrogate model evaluations required for the ODE solver to converge

when evaluating the marginal predictive distribution.

6.8 Open-Source Software

The results in Section 6.7 were produced using doepy®, an open-source Python package

developed by us for design of dynamic experiments.

6.9 Discussion

We have extended the Chapter 5 methodology of replacing black-box models with GP sur-
rogates to design of dynamic experiments. The assumption is that the black-box element of
a model is the latent state transition function f. In our problem formulation all models are
written as first-order models, i.e. for discrete-time models the state x;y; depends only on

the state x;, and for continuous-time models the first-order ordinary differential equation

Shttps://github.com/scwolof/doepy
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Input Output
Approach Mapping dimensionality dimensionality
Chapter 5 | ®g,u9.7-1,0 — 2z1.7 | Dy + Dy x T + Dy D, xT
Chapter 6 Ty, Ut, 0 — Lr41 Dz + Du + D9 Dm

Table 6.8: Comparison of the input and output dimensionality different GP surrogate models
have for different mappings.

system have only the zeroth-order latent states z(7) on the right-hand side. All n*® order

models can be re-written as first-order models by introducing additional latent states.

In Chapter 5, the GP prior is put on the mapping from control to observation. This approach
would not work for design of dynamic experiments, since the input dimensionality would
be too high for accurate GP inference. The output dimensionality would also be high and
require a large number of GP surrogate models. This work instead proposes putting the
GP prior on the latent state transition, thus reducing the input and output dimensionality.

Table 6.8 lists the input and output dimensionalities of the two different approaches.

We have assumed the observed states z; are a linear combination of the latent states x;.
Since the transition function f can be any non-linear function, using z; = Hx, is only a
minor restriction to the types of models we consider for domains such as pharmaceuticals and
chemical manufacturing. State space models are also used e.g. in pixels-to-torque problems,
where the latent states may be coordinates and velocities and the observed states are images
[Wahlstrom et al., 2015], in which case the mapping from latent state to observed state is
highly non-linear. In the more general case of z; = g(x;), with g a non-linear function,

approximate moment matching can be applied to infer the predictive distribution for z;.

We have considered an open-loop control approach, where a designed experiment is run to
completion before data is analysed. Some work in literature, e.g. Galvanin et al. [2009] and
De-Luca et al. [2016], consider a closed-loop approach for parameter estimation, where the
optimal sequence of control inputs is updated online at time step ¢ using data collected up
until time step ¢t — 1. A closed-loop approach means repeatedly solving the experimental
design optimisation problem in Equation (6.2.3). Although possible in principle for the GP
surrogate method of design of dynamic experiments for model discrimination, the computa-

tional cost of solving the optimisation problem would likely be too high in practice.
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7 Discussion and Conclusions

Design of experiments for black-box model discrimination is a difficult but important prob-
lem. Our novel method, hybridising the classical analytical approach and the data-driven
approach using GP surrogate models, performs similarly to the analytical approach on clas-
sical case studies and is often several orders of magnitude faster than existing black-box
approaches. It allows flexibility with regards to the structure and software implementations

of the underlying models.

The GP surrogate method has been implemented in the open-source Python packages GP-
doemd (for design of static experiments) and doepy (for design of dynamic experiments)
and made available on GitHub. These software packages allow researchers and engineers
to implement design of experiments for model discrimination, and include methods for ap-
proximation of marginal predictive distributions, design of experiments, and model discrim-
ination. For methodology experts wishing to develop new model discrimination approaches,
both GPdoemd and doepy include standard sets of case studies. The software packages in
their current form require users to be familiar with Python. A GUI or API allowing exter-
nal software to connect to GPdoemd and doepy would be needed for full uptake of these

packages in industry and academia.

This work has not sought to find the global optima when solving the design of experiments
optimisation problems. The objective functions are expected to be highly non-convex, hence
advanced methods and software (see e.g. Tawarmalani and Sahinidis [2005], Misener and
Floudas [2014] or Bongartz et al. [2018]) would be required in order to solve the objective

functions to global optimality.
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The GP surrogate approach currently has four major limitations:

1. The GP surrogates do not scale well to the large training data sets required to accu-

rately emulate models with high-dimensional design and parameter spaces.

2. The GP (and sparse GP) regression methods presented in Chapter 2 are sensitive to
the choice of covariance function and hyperparameter settings, and it is difficult to

model functions with very different behaviour in different regions of the design space.

3. The GP surrogate approach relies on the same linear and Gaussian approximations as

the analytical approach.

4. Challenges surrounding the training of the GP surrogate models, which usually require

manual intervention from the user.

Statistical machine learning research is constantly improving GP regression methods, in
terms of the size of training data sets the GP models can accommodate and in terms of the
expressiveness of the models. Deep GPs have been trained on very large data sets [Liu et al.,
2018]. Switching from regular GP regression to using deep GPs may help tackle the first
two limitations listed above. Deep GPs can also infer non-Gaussian predictive distributions
[Dutordoir et al., 2018; Salimbeni et al., 2019]. Thus, combined with design criteria that
do not rely on Gaussian predictive distributions, deep GPs could also help tackle the third
limitation. Deep GPs are just one example of more advanced surrogate models that in the

future may improve optimal experimental design and model discrimination performance.

One of the major limitations a user will experience when interacting with GPdoemd and
doepy is the manual intervention usually required to train the GP surrogate models. This
includes identifying the training data space, selecting the locations for training data in-
puts and setting hyperparameter bounds. Efficient automated surrogate model training
would facilitate using GPdoemd and doepy for design of experiments for black-box model
discrimination. The challenges of training accurate GP surrogate models are not unique
to GPdoemd and doepy, given the popularity of GP surrogate models in different fields,
e.g. global optimisation [Boukouvala et al., 2017], structural engineering [Su et al., 2017]
and chemical engineering [Jones et al., 2018]. It is possible that future research and more

advanced surrogate models, e.g. deep GP models, will alleviate these challenges.
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We have presented the GP surrogate approach as a hybridisation of analytical and data-
driven approaches to optimal design of experiments. Plotted on an axis, with the analytical
approach at one end and the data-driven approach at the other, the GP surrogate approach
lies closer to the analytical end than the fully data-driven end. It is possible to imagine
a spectrum of different trade-offs between accuracy and computational complexity along
this axis. At the moment, many of the more advanced GP models’ posteriors do not have
closed form expressions, e.g. Salimbeni and Deisenroth [2017], hence they require sampling to
approximate the predictive distributions. Hybrid approaches for design of experiments using
such advanced GP surrogates may therefore lie closer to the original data-driven approaches.
Future research should explore the range of different hybrid approaches and try to find useful

guidance to practitioners for when different approaches are most suitable.

Model discrimination is useful for finding mechanistic models that adequately describe and
predict a system’s behaviour. As discussed in Chapter 1, mechanistic models are often
needed in industry, e.g. to satisfy regulatory requirements. In the future, more models may
be completely data-driven, following improvements in machine learning techniques and the
reliability and interpretability of machine learning models. However, data-driven models can
only be as accurate as the training data and model priors allow them to be. Extrapolation in
regions of the input space where there is little training data will likely continue to be risky.
Design of experiments for parameter estimation may help improve reliability of data-driven
models. New research is combining mechanistic modelling and data-driven learning (see e.g.
Saemundsson et al. [2019]) for data-driven models with physically meaningful embeddings.
This is a case of hybrid modelling. The challenge for model discrimination becomes to discern
the effect of the mechanistic model part from the data-driven model part. In the future we

may see new methods developed for design of experiments for hybrid model discrimination.
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A Latent State Derivatives

This appendix is concerned with the calculation of

8{“1&7 Et}
ey 1, By—1, U1}’

(A.0.1)

required for gradient-based optimisation using the Taylor approximation-based prediction
of latent state distributions described in Section 6.3. The derivatives of u, and X; with
respect to the latent state mean p,_,, and covariance ¥;_,,, and control inputs #;_,, at time
steps t — n for n > 2 follow from the chain rule, e.g.

Opy _ Oy Opy_4 opy 0%
Oy Opy_y Opy_g OBy Opy_y

with some abuse of tensor product notation.

We assume that the partial first- and second-order derivatives of p¢(-) and X¢(-) are available
with respect to the latent state ax;, control input u; and model parameters 6, either in the
form of an analytical transition function f or with a GP surrogate replacing f, with pf(-)
and Y () defined as in Equation (6.3.1) on page 119.

To simplify notation, let V¢g denote

dg(€. ¢,.... ¢")

V§g = )
9€ (&,&/,..., €)= (E[£], EI¢/)), ., E[£"])

with g(-) a function or dependent variable.

A.1 Matrix Calculus Identities

To simplify the calculations of the derivatives in Equation (A.0.1) in the following sections,
some recurring terms are described here using identities from The Matrix Cookbook [Pe-
tersen and Pedersen, 2012].
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Identity 1: Let g € RPs depend on & € RPs and ¢’ € RP¢ | and let B € RP¢*P he a
constant matrix. Then

OA = 9 [VegB], 0A € RPo*PxDe

o€’
32[9]i
8685’ )

= [0A]; =B [0A]; € RP*Der

Identity 2: Let g € RPs depend on & € RP:, ¢ € RP¢ and ¢’ € RP¢” and let B €

RPexDe¢ he a constant matrix. Then

OA = i// [vsgB (Vg/Q)T] 7 A c RDnynygu
o€
lgli -, dlgl; | (9lgli\ ., 9*lgl;
Al;: = ‘B J ') B J Al;; € RPe
= oAl = gt B8 (PE) B (oAl e R

Identity 3: Let g € RPs depend on & € RP¢, and let B € RP<*P. Then

_ 8 DyxDXDexD
) e -
%, =,

! 0, otherwise .

Identity 4: Let g € R”s depend on £ € RP¢ and ¢’ € RP¢, and let B € RP<*P¢’, Then

0 . |
0A = OB [VggB (Vg/g) } . OA € RPs*PgxDexDe
Jg g
= Al = || |28
m jn

Identity 5: Let g € RPs depend on &€ € RP¢, and let B € RP¢*P depend on & € RP¢ .
Then

0A = (‘)ié/ [Vgg B] , DA€ RDPgxDxDys

- omo=3 ([ < [22] ) omiene.

n=1

Note that these identities hold for all cases € # &', € =¢', € = ¢, et cetera.
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A.2 Discrete-Time State Space Models

The latent state transition between consecutive time steps is described by a discrete-time
model (see Section 6.3.1). The derivatives of the predicted latent state mean g, at time step
t with respect to the latent state mean p,_; and the desired control input @;_; at time step
t — 1, and the model parameters 0 are given by

Oy _ 6:uf(a:7u70)
{1, W—1,0} N, w, 0} | wo)=(u, .00 1.0)

The Taylor approximation of p, does not depend on ¥;_1, hence dp,/0%;_1 = 0.

The expression for the predicted latent state covariance 3, in Equation (6.3.4) on page 120
can be expanded as

T T
X =V, M3 1 (vmtflllft) + Ve 1 2 (Vutflllft) + Vo, Xp (Ve.ut)T
T
+ Ve, iy cov(@i—1,0) (Vop,) + Vop,cov(zi—1,0) (Va, ;) (A.2.1)

The covariance cov(z¢_1,0) is given by

0 0
cov(xi_1,0) = Iggl cov(zi—_2,0) + ggl Yy,

hence dcov(x;—1,0)/0{p;_1, Xt—1, t—1} = 0. The derivatives of the remaining terms on
the right-hand side in Equation (A.2.1) are computed using identity 2 and 4 in Section A.1.

A.3 Discrete-Time Model with A-Transition

The latent state transition between consecutive time steps is described by a discrete-time
model with A-transition (see Section 6.3.2). The derivative of the predicted latent state
mean pu, at time step ¢ with respect to the latent state mean p,_; at time step ¢t —1 is given
by
O, 14 Opy(x, U—1,0)
Oy oz

L=y

and the derivatives with respect to the desired control input @;_; at time step ¢ — 1 and the
model parameters @ are given by

oy _ Opy(Hy—1,u,0)
Oiv—1,0} {u, 0}

(u,0)=(its—1,0)

The Taylor approximation of p, does not depend on 3;_;, hence 8ut/62~3t,1 =0.
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The expression for the predicted latent state covariance 3; in Equation (6.3.5) on page 121
can be expanded as

T
=31+ 3 (vmt—lui) + Va, i
T T
+ vmz—ll‘l'tztfl (vmt—lp‘t) + vut—lp‘tzu (v"t—lp‘t) + VQ/,LtEG (VGMt
T
)+ Vop, cov(zi_1,0)" (Va, 1 110)

)T
(A.3.1)
+ th—ll“’t Cov(mt—la 9) (VOH’t

+ EIIJ + Ef(i:"t) .
The covariance cov(z¢_1,0) is given by

Opty_ Oy
cov(xi—1,0) = cov(xi—2,0) + gt@ L cov(@;_2,0) + gt@ Ly,

hence dcov(w;—1,0)/0{p;_1, Xt—1, @s—1} = 0. The derivatives of the remaining terms
on the right-hand side in Equation (A.3.1) are computed using identity 1, 2, 3 and 4 in
Section A.1.

A.4 Continuous-Time State Space Models

The latent state transition is described by a continuous-time model (see Section 6.3.3). For
a dynamic variable & = £(7, p) parameterised by p and described by the differential equation

L e(r,p) = 9(6(rp).p),

5(7—071)) = £Oa

the partial derivative of & with respect to p is described by the differential equation [Dick-
inson and Gelinas, 1976; Rabitz et al., 1983]

d {Oé(ﬂp)} _ 99(&(r.p).p)  99(&(r.p).p) %(7.p)

dr | 9p op 0&(7,p) op
9¢(r0,p) _ 9
op op’

with some abuse of notation for the case of tensor products.

The latent state mean p, and covariance 3; at time step ¢ are found by extracting the
corresponding elements from the concatenated mean fi(r;) and covariance 3(7;), found by
solving the system of differential equations in Equation (6.3.7) on page 122. Similarly, the
derivatives of u, and 3, with respect to the latent state mean p,_;, latent state covariance
¥;_1 and the desired control input @;_; at time step ¢ — 1 are found by extracting the
corresponding elements from the derivatives of ji(7;) and X(7;) with respect to fi, , and
thl-
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The derivative of fi(;) with respect to f,_; is found by solving

d {agm] _ day(r)  Ofs(r) Oplr)
Op 1] Oy Op(t) Oy’

Olr) _ {I, 0, L(Tf*l)] : (A1)
Ofty_4 00
aH(To) =0
06 ’

in parallel with Equation (6.3.7) on page 122. Note that

o Omslu(r) iun1,0)  Opus(u(r) iu_1,0)

Opy(p(r)) _ duy_y By
Of,_, 0 0 0
0 0 0

The mean fi(7) does not depend on (7), hence dfi,/d%;_1 = 0.

Let & ¢ denote the covariance transition function in Equation (6.3.7) on page 122, given by

Y4(7) = Viam i 2(7) + 2(1) (ng/lf)T + diag(Zy(fi(1)) + 24, 0, 0),

and let v € R be an element in fi,_; or 3;_1. The derivative of 3; with respect to v is
found by solving

d | 9%(r) A% 4( A% 4 (1) 52 AX(7)]i;
d7'|: ov :| f 1231 MJET) 2;21 f ov "
O%(1_1) _o
oy, te—r} 7
9%5(0) _
90 ’
O%(1—1) 1, ifi=mAj=n,
031 Z,jmni {0, otherwise,

in parallel with the system of differential equations in Equation (6.3.7) on page 122 and
Equation (A.4.1), with D = D, + D,, 4+ Dy. The terms on the right-hand side are computed
using identity 1, 3 and 5 in Section A.1 as well as the chain rule.



