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Fortaleza
Ceará, Brazil

• ∼ 2.69 millions of
inhabitants.

• 5th largest city in Brazil.

• 34 Km of beaches.

• Around 25-30 ◦C all year.

• 2nd Brazilian tourism
destination.

César Lincoln C. Mattos (UFC) Probabilistic ML: Applications and Modeling Investigations 4



‘Beira Mar’ Avenue. ‘Iracema guerreira’ statue.

‘Jangada’ at the sunset. ‘Dragão do Mar’ Center of Art and Culture.



Federal University of Ceará (UFC)

• 8 campi.

• ∼ 2,150 professors.

• ∼ 27,000 undergraduate
students.

• ∼ 6,000 graduate students.

• > 110 undergraduate courses.
→ 15 courses on CS.

• > 150 graduate courses.

→ 2 courses on CS.
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Department of Computer Science (DC)

• Created in 1990.

• 2 Bsc degrees.

→ Computer Science.
→ Computer Engineering.

• Specialization degree on
Information Technology.

• MSc and PhD in Computer
Science.

• 30 professors.

• 8 research laboratories.

• 2 teaching laboratories.
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DC/UFC
MSc and PhD programs in CS (MDCC)
• Started in 1995 (Msc) and 2004 (PhD).

• Strong academic production and fund-raising capacity.

Logics and Artificial Intelligence Group (LOGIA)
• Research in Logics, AI/ML and Computer Theory.

• AI/ML

→ Prof. João Paulo P. Gomes, Prof. João Paulo do Vale Madeiro
and Prof. César Lincoln C. Mattos.

→ Focus on theoretical modeling and applications.
→ International collaborations and joint projects with industry.
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Motivation

• ML teaching, research and applications at UFC (and in most
Brazilian universities) have focused mostly on standard ML.

• There has been a growing shift towards DL (specially in
applications).

• One of LOGIA’s current goals is to provide some basis to
overcome such Probabilistic ML limited local adoption.

• Along the way we hope to make contributions to the overall ML
community.
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Dynamical modeling
System identification methodology (Ljung, 1999)

1 Collect data;

2 Determine model structure;

3 Perform model selection;

4 Validate the model.
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(a) One-step ahead prediction. (b) Free simulation.



Gaussian processes for system identification
• Models with external dynamics: Uses measurements as

regressors.
- Nonlinear autoregressive with exogenous inputs (NARX):

yi = f (xi) + ε
(y)
i ,

xi = [ȳi−1, ūi−1]>

= [[yi−1, yi−2, · · · , yi−Ly ], [ui−1, ui−2, · · · , ui−Lu ]]>.

• Models with internal dynamics: Uses latent states x .
- State-space model (SSM):

xi = f (xi−1, ui−1) + ε
(x)
i ,

yi = g(xi) + ε
(y)
i .

• Dynamical Gaussian process models: GP priors on functions.

- GP-NARX: tractable for Gaussian observation noise.
- GP-SSM: intractable due to the latent inputs.
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Recurrent Gaussian Processes (RGPs)1
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ūi−1

f
(1)
i+1 f

(2)
i+1
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RGP graphical model with H hidden layers.

• Hierarchical structure: Separate modeling of transition (hidden)
and observation (emission) functions.

• Latent dynamical variables: Avoids feedback of observations.
• REVARB (REcurrent VARiational Bayes): Follows mean field

variational inference from Damianou and Lawrence (2013).

1Mattos et al. Recurrent Gaussian processes, 2016.
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p
(
f (h)

∣∣∣X̂ (h)
)

= N
(
f (h)

∣∣∣0,K (h)
f

)
, 1 ≤ h ≤ H + 1,

p
(
x

(h)
i

)
= N

(
x

(h)
i

∣∣∣µ(h)
0i , λ

(h)
0i

)
, 1 ≤ i ≤ L,

p
(
x

(h)
i

∣∣∣f (h)
i

)
= N

(
x

(h)
i

∣∣∣f (h)
i , σ2

h

)
, L + 1 ≤ i ≤ N ,

p
(
yi

∣∣∣f (H+1)
i , σ2

H+1

)
= N

(
yi

∣∣∣f (H+1)
i , σ2

H+1

)
, L + 1 ≤ i ≤ N .



RGP for system identification (free simulation)

GP-NARX - RMSE = 1.9245. RGP with 2 hidden layers - RMSE = 0.4513.

GP-NARX - RMSE = 1.5488. RGP with 2 hidden layers - RMSE = 0.3104.



RGP for Human Motion and Avatar Control

• Walking and running motions2 with 57 output dimensions and
coordinate of the left toes as input signal.

• Use velocity as a signal to control an avatar’s motion.

Motion generated by the RGP model with a step control signal for the velocity.

2Data available at http://mocap.cs.cmu.edu/
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RGP-t/REVARB-t3: RGP + Student-t likelihood
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3Mattos et al., Deep RGP for outlier-robust system identification, 2017.



RGP-t for robust system identification

(a) RGP (H = 2) without outliers. (b) RGP (H = 2) with 30% of outliers.

(c) RGP-t (H = 2) without outliers. (d) RGP-t (H = 2) with 30% of outliers.

Free simulation on test data after estimation on the pH dataset.



RGP-t for robust system identification

(a) Variational precisions after optimization. (b) Detected outliers.

Outlier detection by the RGP-t model with 2 hidden layers and REVARB-t inference for the pH
estimation data in the scenario with 30% of outliers.
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Scaling inference with RGP models4

S-REVARB
SVI framework adapted to the RGP model and the REVARB method,
following Hensman et al. (2013) for better scaling.

• Local S-REVARB: More directly derived, but preserves all the
variational parameters.

• Global S-REVARB: Avoids the growth of the variational parameters
with recognition models.

µ(H )RNN(H )
µ· · ·µ(2)RNN(2)

µµ(1)RNN(1)
µu

MLP
(1)
λ λ(1) MLP

(2)
λ λ(2) · · · MLP

(H )
λ λ(H )

Diagram for the recognition models of the Global S-REVARB framework.

4Mattos and Barreto, A stochastic variational framework for Recurrent
Gaussian processes models, 2019.
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System identification with large datasets
Wiener-Hammerstein (95,000/84,000 training/testing samples) RMSE NLPD
RNN (1 hidden layer) 1.222× 10−2 -
RNN (2 hidden layers) 8.247× 10−3 -
Variational Sparse GP-NARX (N = 5000) 3.584× 10−2 −1.883
REVARB (H = 1,N = 5000) 2.037× 10−2 −2.406
REVARB (H = 2,N = 5000) 1.547× 10−2 −2.544
Local S-REVARB (H = 1) 1.295× 10−2 −2.609
Local S-REVARB (H = 2) 2.372× 10−2 −2.308
Global S-REVARB (H = 1) 8.369× 10−3 −2.606
Global S-REVARB (H = 2) 5.664× 10−3 −2.643

Summary of free simulation results after estimation from large dynamical datasets.

Size

RNN (1 hidden layer) 2201
RNN (2 hidden layers) 4402
Local S-REVARB (H = 1) 194,206
Local S-REVARB (H = 2) 386,574
Global S-REVARB (H = 1) 8608
Global S-REVARB (H = 2) 15,378

Comparison of the number of adjustable parameters (RNNs) or hyperparameters and variational
parameters (S-REVARB variants) in the Wiener-Hammerstein benchmark.
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Gaussian Process Latent Variable Model (GPLVM)

• Variational inference for GPLVMs only has exact solutions for a
limited set of kernels (Titsias and Lawrence, 2010).

→ This restriction is due to the integrals, named Ψ-statistics, that
appear in the evidence lower bound:

2 ln p(y:d) ≥ ln|Ku | − n ln
(
2πσ2

y

)
− ln|W |

− yᵀ
:dy:d

σ2
y

+
yᵀ

:d Ψ1 W
−1 Ψ1

ᵀ
y:d

σ2
y

−
ψ0

σ2
y

+
Tr
(
K−1

u Ψ2

)
σ2
y
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Unscented GPLVM5

• Popular GP frameworks, by default, solve this issue by using the
Gauss-Hermite (GH) quadrature.

• However, GH is not viable on problems with modest input
dimensions D due to cost proportional to HD (for a chosen H ).

• Monte Carlo (MC) integration could also be used, but due to its
stochasticity, efficient optimizers (eg L-BFGS) cannot be used.

• The unscented transformation (UT) presents itself as a
parameterless, deterministic, and linearly scaling alternative.

5de Souza et al. Learning GPLVM with arbitrary kernels using the
unscented transformation, 2021.
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Unscented GPLVM - dimensionality reduction

Results for the Oil flow dataset.

Note that the UT managed to

achieve better results while using 1
3

of the evaluations of the GH.

Method # evaluations Kernel Accuracy

PCA - - 79.0± 6.5

Analytic - RBF 98.0± 2.7

Gauss-Hermite 32 Matérn 3/2 95.0± 6.1

Unscented 10 Matérn 3/2 100.0± 0.0

Monte Carlo 10 Matérn 3/2 85.6± 8.7
32 Matérn 3/2 87.9± 5.4

200 Matérn 3/2 95.4± 3.0

(a) Analytic. (b) Gauss-Hermite.

(c) UT. (d) MC(32).

César Lincoln C. Mattos (UFC) Probabilistic ML: Applications and Modeling Investigations 27



Unscented GPLVM - time series prediction

Results for the Airline dataset.

Comparing UT with GH, a 170 fold

increase in number of evaluations

resulted in only a 0.06 decrease in

NLPD.

Method # evaluations Kernel NLPD

GP-NARX - Per.+RBF+Lin. 7.46

GPLVM - Analytic - RBF+Linear 7.08

GPLVM - GH 4096 Per.+RBF+Lin. 5.20

GPLVM - UT 24 Per.+RBF+Lin. 5.26

GPLVM - MC 24 Per.+RBF+Lin. 5.41± 0.17

200 Per.+RBF+Lin. 5.19± 0.06

4096 Per.+RBF+Lin. 5.19± 0.01

1950 1952 1954 1956 1958 1960

200

400

600 Data
Prediction
Prediction (95% CI)

(a) GP-NARX

1950 1952 1954 1956 1958 1960

200

400

600 Data
Prediction
Prediction (95% CI)

(b) GPLVM (GH).

1950 1952 1954 1956 1958 1960

200

400

600 Data
Prediction
Prediction (95% CI)

(c) GPLVM (UT).
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Deep Mahalanobis Gaussian Process6

• Most widely used kernels are stationary, which hinders the
modeling of functions with input dependent smoothness.

• Based on the work of Gibbs (1997), Paciorek (2003) shows that
any stationary kernel k can be transformed into a non-stationary
kernel kNS through the following transformation:

k(a , b) = φ
(
(a − b)∆−1(a − b)>

)
,

kNS(a , b) =
√
2
|∆(a)| 14 |∆(b)| 14
|∆(a) +∆(b)| 12

· φ

(
(a − b)

(
∆(a) +∆(b)

2

)−1

(a − b)>

)
.

6Work in progress by Daniel de Souza.
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Deep Mahalanobis GP

• As noted by Gibbs (1997), the
varying lengthscales lose their
interpretability. For example:

2
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le
ng

th
sc

al
e

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x

2

1

0

1

f(x
)

• Note that the function is wavier
when the lengthscale is higher.

• Paciorek (2003) showed that,
unlike stationary kernels, this
kernel does not induce a metric
space on the inputs.

• In stationary kernels, the
mapping of x to this metric

space is x
(
∆−1/2

)>
• Due to the replacement of ∆

by ∆(a)+∆(b)
2 , the dependence

of a in the projection of b (and
vice versa) means that the
triangle inequality can be
violated.
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Deep Mahalanobis GP

• Is it possible to define non-stationary kernels and preserve at
least one of these properties?

• Yes! At least for squared exponential kernels. First we rewrite:

RBF(a , b) = exp

(
−1

2
(a − b)∆−1(a − b)>

)
= exp

(
−1

2
(a∆−

1
2
>
− b∆−

1
2
>

)(a∆−
1
2
>
− b∆−

1
2
>

)>
)

= exp

(
−1

2
(aW > − bW >)(aW > − bW >)>

)
.

Now we just need to add an input dependency on W .
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least one of these properties?

• Yes! At least for squared exponential kernels. First we rewrite:

RBF(a , b) = exp

(
−1

2
(a − b)∆−1(a − b)>

)
= exp

(
−1

2
(a∆−

1
2
>
− b∆−

1
2
>

)(a∆−
1
2
>
− b∆−

1
2
>

)>
)

= exp

(
−1

2
(aW > − bW >)(aW > − bW >)>

)
.

Now we just need to add an input dependency on W .
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Deep Mahalanobis GP

• The non-stationary kernel becomes:

kNS(a , b) = exp

(
−1

2
(aW (a)> − bW (b)>)(aW (a)> − bW (b)>)>

)
.

• There is still no notion of lengthscales as before, but we kept the
property that this kernel induces a metric space on the input.

• By placing a GP prior on W (x ), we obtain a deep Gaussian
process model where each layer connects not through outputs to
inputs, but outputs to kernel hyperparameters.
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Deep Mahalanobis GP

We chose a two-layer model as a starting point:

p(W | X ) =

Q ,D∏
q,d

N
(
w:qd | 0,K (q)

w

)
,

p(f |W ,X ) = N (f | 0,Kf ),

where:[
K (q)

w

]
ij
= σ(q)

w

2
exp

(
−1

2
(xi − xj )∆

(q)
w

−1
(xi − xj )

>
)

[Kf ]ij = σ2
f exp

(
−1

2
(xiW

>
i − xjW

>
j )(xiW

>
i − xjW

>
j )>

)
Variational inference in this model is an extension of the methods by
Titsias and Lázaro-Gredilla (2013), which deals with the stationary
case.
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Deep Mahalanobis GP
Our initial experiments against doubly stochastic DGP (Salimbeni
and Deisenroth, 2017) shows that DMGP has equivalent or better
performance, with DMGP having a more significant bias for
dimensionality reduction.
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Figure 3: Most relevant latent dimension for each model.
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Deep Mahalanobis GP
Our initial experiments against doubly stochastic DGP (Salimbeni
and Deisenroth, 2017) shows that DMGP has equivalent or better
performance, with DMGP having a more significant bias for
dimensionality reduction.
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Figure 4: NLPD for each of the 5-fold splits.
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Wind Turbine Power Curve (WTPC) Modeling

Problem Description: Model
the distribution of the normalized
power p, given the wind speed v .

Data Peculiarities

• Sigmoidal shape limited in
the interval [0, 1];

• Heteroscedastic noise;

• Presence of outliers, whose
location can be
input-dependant.

Figure 5: Normalized power p vs.
wind speed v data used for WTPC
modeling. Color-coding represents
operational status derived from
event logs.
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Chained GPs applied to WTPC Modeling7

• We follow a Chained GP approach (Saul et al, 2016).

• Likelihood: We choose a Student-t likelihood whose parameters
depend on x = v through L = 3 independent GPs
f (1) = f , f (2) = g , f (3) = h:

p(yi |fi , gi , hi) = T (yi |µy = fi , σy = t(gi), ν = t ′(hi)),

where t(g) = exp(g), and t ′(h) = 3 + exp(h).

• Domain knowledge: We consider a sigmoidal-shaped mean
function µf (·) for the GP prior on f :

µf (x ) =

[
1 + exp

(
−
(
v − v0

s

))]−1/γ

.

7Virgolino, Wind Turbine Power Curve Modeling with Gaussian
Processes, 2020.
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Chained GPs applied to WTPC
• Inference: Variational approach with ELBO that can be

factorized to enable SVI.

Experiments with different regression models. 0-GP: standard GP; L3P: Logistic
3-Parameter; HS: Gaussian; HS: Student-t; LRHS: Locally Robust

Heteroscedastic Student-t.
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Portfolio-based Bayesian optimization

• Bayesian optimization has been an effective entry point to sell
GPs and Bayesian methods in practical applications.

• Portfolio-based strategies (Hoffman et al., 2011; Shahriari et al.,
2014) have been a straightforward approach to alleviate the need
to choose an acquisition function and to improve results.

• GP-Hedge (Hoffman et al., 2011) adopts a portfolio of
acquisition functions governed by a multi-armed bandit strategy.

→ All past measures of each acquisition function are considered to
choose the next query point. Is this a desirable behavior?
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Normalized Portfolio Allocation Strategy BO8

• No-PASt-BO aims to overcome GP-Hedge limitations by
→ reducing the influence of far past evaluations;
→ presenting a built-in normalization step that avoids similar

probabilities in the portfolio.

8Vasconcelos et al., No-PASt-BO: Normalized Portfolio Allocation
Strategy for Bayesian Optimization, 2019.
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No-PASt-BO

(a) Portfolios with 3 acquisition functions. (b) Portfolios with 9 acquisition functions.

(c) SVR hyperparameter optimization task.
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LS-SVR as Bayesian RBF networks

LS-SVR
• Least squares support vector machine (LS-SVM) is simplification

of classical SVMs using all points as support vectors;

• Solved in the dual space using least squares;

• Very popular, with ≈10k citations, and people use the same
formulation for regression (LS-SVR).
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LS-SVR as Bayesian RBF networks

Our take on it9

• LS-SVR is a point estimate (MAP) for a Bayesian GLM;

• We show how to encode the SV constraints as a Gaussian prior;

• Notably, our prior is conjugate and we can go Bayesian “for free”.

Given ε > 0, a Bayesian ε-LS-SVR is a Bayesian RBF network with all
training points as centroids in the hidden layer:

yn ∼ N

(
N∑
i=1

αik(xn ,xi) + b, σ2

)
,

[b,α]> ∼ N (µ,Σ),

Σ−1 =

[
ε γ−11>

γ−11 11> + 2γ−1Ω + γ−2I

]
, µ = γ−1Σ

[
0
y

]
.

9Mesquita et al, LS-SVR as Bayesian RBF networks, IEEE TNNLS, 2020.
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LS-SVR as Bayesian RBF networks

LS-SVR

SVR

LS loss function10

KRR
−bias11

GP
MAP12

−bias, MAP13

BNN

our work

∞ limit14

Figure 7: Relations between the regression learning models considered in
the present study. Some relevant references are highlighted in each edge.

10Saunders et al. (1998), Suykens et al. (2002)
11Saunders et al. (1998), Cristianini et al. (2000)
12Rasmussen and Williams (2006)
13Gao et al. (2002), Chu et al. (2004)
14Neal, (1995), Williams, (1997)
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Multilateration
• Multilateration is a general technique to determine the position

of an object based on measures from other known objects.
→ Input:

– a set of K reference points rk ∈ RD ;
– the estimated distances d ∈ RK from the query point q ∈ RD

to the reference points

→ Output: the position of the query point q .
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Bayesian Multilateration15

• We make the following assumptions:
• p(q): A normal prior with mean given by the mean of the

reference points.
• p(rk ): A normal distribution with mean given by the measured

position of the reference point.
• p(dk |q , rk ): A Nakagami likelihood with the mode at the

measured distance.

• Bayesian Multilateration formulation:

p(q |d) ∝ p(q)

K∏
k=1

∫
p(dk |q , rk )p(rk )drk .

∝

15Work in progress by Alisson Alencar.
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Trajectory anomaly detection using NFs16

Problem Statement

• Let T = {Tn}Nn=1 be a set of trajectories such that

Tm ,
(
q

(m)
1 , q

(m)
2 , · · · , q (m)

l , · · · , q (m)
Lm

)
,

where q
(m)
l =

(
q

(m)
l ,1 , q

(m)
l ,2 , q

(m)
l ,3

)
is a location point.

• We want to create a density estimation model to evaluate the
anomaly degree of any given trajectory.

Proposed methodology

• Segment-based anomaly detection with Normalizing Flows.

• Trajectory segments:

S
(m)
i ,

(
q

(m)
i , q

(m)
i+1 , · · · , q

(m)
i+W

)
.

where W 6 Lm and 1 6 i 6 Lm −W + 1.

16Dias, M. L. D., et. al.; Anomaly Detection in Trajectory Data
with Normalizing Flows, 2019
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(m)
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)
.
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Trajectory anomaly detection using NFs

Aggregated anomaly detection with NFs (GRADINGS)

1. Create trajectory segments:

X =
M⋃

m=1

{
xn = δ

(
S

(m)
i

)∣∣∣Lm−W+1
i=1

}
,

2. Estimate distribution of trajectory segments using Normalizing
Flows:

α
(
S

(m)
i

)
= − log p

(
δ
(
S

(m)
i

))
.

3. Aggregate anomaly scores:

A (Tm) = ϕ

({
α
(
S

(m)
i

)}Lm−W+1

i=1

)
.
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Trajectory anomaly detection using NFs
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Figure 9: AUCROC for (top row) CAR × BUS (bottom row) BUS × CAR.
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Trajectory anomaly detection using NFs

Table 1: FP rates obtained when we fix a true positive rate of 80%.

Model

Scenario Variant Length MAF RealNVP GMM LOF
C

A
R
×

B
U

S

segment 10 0.423 0.643 0.698 0.719
20 0.498 0.640 0.653 0.688
30 0.608 0.652 0.699 0.727

average 10 0.342 0.335 0.376 0.465
20 0.272 0.435 0.500 0.550
30 0.361 0.577 0.556 0.622

median 10 0.245 0.375 0.308 0.481
20 0.247 0.335 0.353 0.419
30 0.201 0.361 0.315 0.462

B
U

S
×

C
A

R

segment 10 0.603 0.592 0.597 0.684
20 0.510 0.633 0.682 0.692
30 0.489 0.517 0.631 0.689

average 10 0.252 0.310 0.482 0.712
20 0.529 0.601 0.635 0.704
30 0.311 0.555 0.622 0.732

median 10 0.226 0.330 0.761 0.771
20 0.190 0.294 0.744 0.819
30 0.055 0.328 0.564 0.747
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Trajectory anomaly detection using NFs

Ongoing work
• Expand current work for general multivariate time-series

→ Motion Glow17 + Flow Gaussian Mixture Model18.
→ Automatic anomaly threshold selection using Extreme Value

Theory (EVT)19.

17Henter et al., 2020
18Izmailov et al., 2019
19Siffer et al., 2017
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Concluding Remarks

• Probabilistic ML presents plenty of application possibilities.

• Several model extensions and theoretical aspects to be pursued.

• Great for small(ish) data.

• We still need:

→ more researchers trained on probabilistic modeling.
→ more seamless integration with DL methods.
→ faster ‘notebook draft to deployed solution’ pipeline.
→ time to revisit/apply previous ideas (versus ‘trendy’ topics).

• Collaborative efforts are always welcomed!
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Questions?

César Lincoln C. Mattos
@cesarlincoln

cesarlincoln@dc.ufc.br
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