
Deconditional Downscaling with Gaussian
processes

Siu Lun Chau*, Shahine Bouabid*, Dino Sejdinovic

35th Conference on Neural Information Processing, 2021



Outline 2

Background on Kernel Embeddings

Deconditional Mean Embedding

Deconditional Downscaling with Gaussian processes



Background on Kernel Embeddings





Kernels and Reproducing Kernel Hilbert Spaces 4

▶ Kernel method is any method that endows a generic abstract
domain X with an inner product structure induced by some
feature transformation φ : X → H.

▶ Kernel function is as an inner product of features: any function
k : X × X → R for which there exists a Hilbert space H and a
map φ : X → H s.t. k(x, x′) = ⟨φ(x), φ(x′)⟩H for all x, x′ ∈ X .

▶ There exists a canonical feature space Hk, called reproducing
kernel Hilbert space (RKHS) with canonical feature map
x 7→ k(·, x), where:
▶ ∀x ∈ X , k(·, x) ∈ Hk

▶ ∀x ∈ X ,∀f ∈ Hk, ⟨f, k(·, x)⟩Hk = f(x).

Thus also k(x, x′) = ⟨k(·, x), k(·, x′)⟩Hk
.

▶ Moore-Aronszajn Theorem: every positive semidefinite kernel is
the kernel of a unique RKHS.
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Kernel Trick and Kernel Mean Trick 5

▶ implicit feature map x 7→ k(·, x) ∈ Hk

replaces x 7→ [ϕ1(x), . . . , ϕs(x)] ∈ Rs

▶ ⟨k(·, x), k(·, y)⟩Hk
= k(x, y)

inner products readily available Cortes & Vapnik, 1995; Schölkopf

& Smola, 2001

▶ RKHS embedding: implicit feature
mean
Smola et al, 2007; Sriperumbudur et al, 2010; Muandet et al,

2017

P 7→ µk(P ) = EX∼P k(·, X) ∈ Hk

replaces
P 7→ [Eϕ1(X), . . . ,Eϕs(X)] ∈ Rs

▶ ⟨µk(P ), µk(Q)⟩Hk
= EX∼P,Y ∼Qk(X,Y )

inner products easy to estimate

Gretton et al, 2005; Gretton et al,

2006; Fukumizu et al, 2007; DS et

al, 2013; Muandet et al, 2012;

Szabo et al, 2015
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Maximum Mean Discrepancy 6

▶ Maximum Mean Discrepancy (MMD) Borgwardt et al, 2006; Gretton et al,

2007 between P and Q:

MMDk(P ,Q) = ∥µk(P )− µk(Q)∥Hk
= sup

f∈Hk: ∥f∥Hk
≤1

|Ef(X)− Ef(Y )|

▶ Characteristic kernels: MMDk(P ,Q) = 0 iff P = Q (Gaussian

RBF exp(− 1
2σ2 ∥x− x′∥22), Matérn family, inverse multiquadrics. ).

▶ Can encode structural properties in the data: kernels on
non-Euclidean domains, networks, images, text...



Conditional Mean Embeddings 7

Consider a joint distribution PXY over rvs (X,Y ) taking values in
X × Y. Given a kernel ℓ : Y × Y → R, the conditional mean
embedding (CME) of Y |X = x is defined as:

µY |X=x := E[ℓ(·, Y )|X = x] =

∫
Y
ℓ(·, y) dPY |X=x(y) ∈ Hℓ.

▶ Allows to compute ∀f ∈ Hℓ,E[f(Y )|X = x] = ⟨f, µY |X=x⟩Hℓ
.



Conditional Mean Embeddings 8

To model conditional embeddings as functions of x, we associate them
with a conditional mean operator (CMO) CY |X : Hk → Hℓ where
k : X × X → R, which satisfies

µY |X=x = CY |Xk(·, x).

This is essentially a feature-to-feature RKHS-valued ridge regression.



GPs and RKHSs: shared mathematical foundations 9

▶ The same notion of a positive-definite kernel, but conceptual
gaps between communities.

▶ Orthogonal projection in RKHS ⇔ Conditioning in GPs.

▶ 0/1 laws: GP sample paths with infinite-dimensional covariance
kernel k lie a.s. outside of Hk. The space of sample paths can be
thought of as an ”outer shell” of Hk.



Deconditional Mean Embedding





Deconditional Mean Operation 11

▶ CMO CY |X : Hk → Hℓ allows us to reason about the conditional
expectation of any f ∈ Hℓ in the following way:

C⊤
Y |Xf = E[f(Y ) | X = ·]

▶ Hsu and Ramos [2019] proposed Deconditional Mean Operator
DY |X : Hℓ → Hk (DMO) as a natural counterpart to CMO.

▶ Given the conditional mean function, we recover f by setting

D⊤
Y |XE[f(Y ) | X = ·] = f



Deconditional Mean Operation 12



Deconditional Mean Operator 13

▶ DMO can be rewritten in terms of CMOs and cross-covariance
operators:

DY |X = (CY |XCXX)⊤(CY |XCXXC⊤
Y |X)−1

under regularity assumption.

▶ In our work we further characterise their formulation and show
that deconditioning can be seen as a two-staged vector valued
kernel ridge regression.



Deconditioning as two-staged regression 14

▶ First introduced by Grunewalder et al. [2012], CME has a
feature-to-feature regression interpretation:

Ec(C) :=
1

N

N∑
i=1

||ℓyi
− C⊤kxi

||2Hℓ
+ λΩ(C)

▶ Deconditioning has a similar interpretation, thus allowing one to
apply regression convergence result to theoretically analyze DMO,

Ed(D) :=
1

M

M∑
j=1

||kxj
−DĈ⊤

Y |Xkxj
||2Hk

+ ϵΩ(D)
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Problem Setup 17

Dataset

▶ We have a dataset of N bags of
high-resolution (HR) covariates
bxj :=

{
x
(1)
j , . . . , x

(nj)
j

}
paired with a

mediating variable yj

D1 =
{
bxj , yj

}N

j=1
, (1)

and a second separate dataset of M
mediating variables ỹj paired with a
low-resolution (LR) response z̃j .

D2 =
{
ỹj , z̃j

}M

j=1
. (2)

x(i)

bx

ỹy

z̃

Figure 1: Representation
of covariates indirect
pairing



Problem Setup 18

Objective

▶ Downscale the response z̃ to the HR
granularity level of x(i) covariates, i.e.
find a function f : X → R which maps
between HR covariates and HR
responses (not observed!).

How?

▶ Assume there exists mapping f : X → R.
▶ But only observe “aggregates”

EX [f(X)|Y = y].

▶ Recover underlying function f out of
aggregated observations.

x(i)

bx

f
ỹy

z̃

Figure 2: We wish to learn
a map from HR covariates
to HR estimate of the
response.



Deconditional Formulation 19

Given dataset D2 =
{
ỹj , z̃j

}M

j=1
,

Observation Model

▶ We suppose that the HR response f aggregates into the LR
response z̃j as

z̃j = EX [f(X)|Y = ỹj ] + εj (3)

with noise εj ∼ N (0, σ2).

Recovering f corresponds to the deconditioning problem of Hsu and
Ramos [1]:

▶ Given g : Y → R, infer the function f : X → R such that

g(y) = EX [f(X)|Y = y]. (4)

f is called the deconditional mean of g w.r.t. PX|Y .
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Bayesian formulation for f and g 21

Conditional Mean Process

▶ By placing a GP prior on f ∼ GP(m, k), we can represent the LR
field as:

g(y) = EX [f(X)|Y = y] =

∫
X
f(x)dPX|Y=y(x) ∼ GP(ν, q)

where by linearity of the integral,

ν(y) = EX [m(X)|Y = y]

q(y, y′) = EX,X′ [k(X,X ′)|Y = y, Y ′ = y′] = ⟨µX|Y=y, µX|Y=y′⟩k.

▶ ν and q are estimated via conditional mean operator CX|Y using

D1 =
{
bxj , yj

}N

j=1
and a second kernel ℓ : Y × Y → R.



Joint normality between LR and HR field 22

▶ f ∼ GP(m, k) and g ∼ GP(ν, q)

▶ The latent HR field f(x) and the observed noisy LR field
z̃ = g(ỹ) + ϵ are both normally distributed:[
f(x)
z̃

]
| ỹ ∼ N

([
m(x)
ν(ỹ)

]
,

[
k(x, x) Cov(f(x), g(ỹ))

Cov(g(ỹ), f(x)) q(ỹ, ỹ) + σ2

])

▶ Allows to directly obtain deconditional posterior
f |z̃ ∼ GP(md, kd) from D2 with:

m̂d(x) = m(x) + k(x,x)A(Q̂+ σ2IM )−1(z̃− ν(ỹ))

k̂d(x, x
′) = k(x, x′)− k(x,x)A(Q̂+ σ2IM )−1A⊤k(x, x′)

where A := (ℓ(y,y) +NλIN )−1ℓ(y, ỹ) with λ > 0, Q̂ := q̂(ỹ, ỹ).
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Mediated Downscaling of Atmospheric Temperatures 25

Model RMSE ↓ MAE ↓ Corr. ↑ SSIM ↑

Krigging 8.02±0.28 5.55±0.17 0.831±0.012 0.212±0.011

VBAgg [2] 8.25±0.15 5.82±0.11 0.821±0.006 0.182±0.004

Our method 7.40±0.25 5.34±0.22 0.848±0.011 0.212±0.013

Table 1: Downscaling similarity scores of posterior mean against HR
groundtruth; reports 1 s.d.
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Conditional Mean Shrinkage Estimator 27

Usual CMO estimation

CX|Y = CXY (CY Y + λ IdHℓ
)−1

= EXY [k(·, X)⊗ ℓ(Y, ·)](EY [ℓ(·, Y )⊗ ℓ(Y, ·)] + λ IdHℓ
)−1

≈ 1

N
k(·,x)ℓ(y, ·)

(
1

N
ℓ(·,y)ℓ(y, ·) + λ IdHℓ

)−1

= k(·,x)
(
ℓ(y, ·)ℓ(·,y) +NλIn

)−1
ℓ(y, ·)

= k(·,x) (Lyy + nλIn)
−1

ℓ(y, ·)

where k(·,x) = [k(·, x1), . . . , k(·, xN )], ℓ(·,y) = [ℓ(·, y1), . . . , ℓ(·, yN )].



Conditional Mean Shrinkage Estimator 28

Bagged CMO estimation

CX|Y = CXY (CY Y + λ IdHℓ
)−1

= EXY [k(·, X)⊗ ℓ(Y, ·)](CY Y + λ IdHℓ
)−1

= EY [EX [k(·, X)|Y ]⊗ ℓ(Y, ·)](CY Y + λ IdHℓ
)−1

= EY [µX|Y ⊗ ℓ(Y, ·)](CY Y + λ IdHℓ
)−1

≈ 1

N
µ̂X|yℓ(y, ·)

(
1

N
ℓ(·,y)ℓ(y, ·) + λ IdHℓ

)−1

= µ̂X|y (Lyy +NλIn)
−1

ℓ(y, ·)

:=S ĈX|Y

where µ̂X|y = [µ̂X|Y=y1
, . . . , µ̂X|Y=yN

] and

µ̂X|Y=yj
= 1

nj

∑nj

i=1 k(·, x
(i)
j ).



Notation Abuses 29

k(·,x)ℓ(y, ·) =
N∑
i=1

k(·, xi)⊗ ℓ(·, yi) ∈ Hk ⊗Hℓ

ℓ(y, ·)ℓ(·,y) = [⟨ℓ(·, yi), ℓ(·, yj)⟩Hℓ
]1≤i,j≤N

= [ℓ(yi, yj)]1≤i,j≤N

= Lyy ∈ RN×N
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